Biodegradable Polymers in The Development of Infiltration Devices

Nidhi Asthana

Department of Physics,
Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.

Corresponding author: nidhiasthana04@gmail.com

Anshuman Srivastava

Department of Mechanical Engineering,
Shambhunath Institute of Engineering & Technology, Prayagraj, Uttar Pradesh, India.
E-mail: anshuman0203@gmail.com

(Received on September 6, 2024; Revised on September 17, 2024 & October 28, 2024 & November 4, 2024; Accepted on November 5, 2024)

Abstract

To provide safe and clean water for a variety of purposes, water filtration is essential. Traditional filtration materials, while effective, often pose environmental concerns due to their non-biodegradable nature. In recent years, biodegradable polymers have emerged as a promising alternative in the field of water purification. This manuscript provides a comprehensive overview of biodegradable polymers used in water filtration, emphasizing recent advancements and applications. We explore the types of biodegradable polymers, their mechanisms in filtration, and highlight the latest developments and real-world applications. This technology is essential for ensuring the availability of clean water and protecting human health. Traditional filtration media, such as synthetic polymers, are effective but pose threat to environmental due to their non-biodegradable nature. Biodegradable polymers have emerged as a sustainable alternative for effective filtration with minimal environmental impact. This article reviews the latest advances in biodegradable polymers for filtrations process, exploring their types, synthesis of membrane, mechanisms, and recent applications.

Keywords- Biodegradable polymer, Synthesis process, Filtration technique, Environmental issues.

1. Introduction

Water scarcity and contamination are critical global challenges, requiring the development of effective and sustainable filtration technologies. Access to clean water is essential for human health and environmental sustainability (Arjmandi et al., 2021; Ekane et al., 2021). Conventional filtration media, including synthetic polymers and metals, have demonstrated high filtration efficiency but pose significant environmental concerns due to their non-biodegradability and contribution to pollution (Buta et al., 2021; Sanchez-Salvador et al., 2021). In response, biodegradable polymers—materials derived from natural sources or engineered to decompose naturally—offer a promising and sustainable alternative for water filtration. This manuscript provides a comprehensive review of the current advancements in biodegradable polymers for filtrations process, emphasizing their various types, performance metrics, and recent innovations in the field (Zhu and Wang, 2020). It is crucial for removing contaminants from water sources, ensuring its safety for consumption and other uses. Traditional filtration methods often utilize synthetic materials like plastics, which despite their efficiency, present significant disposal, and environmental issues.

As global awareness of environmental sustainability grows, there is an increasing demand for greener alternatives in water filtration technology (Albright and Chai, 2021). Water filtration is a fundamental process for ensuring the safety and quality of water, which is essential for human health, agricultural activities, and industrial applications. Contaminated water poses significant health issues, spread of several diseases due to the presence of toxic substances. As a result, efficient filtration systems are crucial for

removing impurities, pathogens, and pollutants from water sources. Traditional systems often rely on materials such as synthetic polymers, ceramics, and metals. While these materials are effective, they have several drawbacks. Synthetic polymers, such as polyethylene and polypropylene, are widely used due to their durability and performance (Bassyouni et al., 2022). However, they contribute to environmental pollution because they are non-biodegradable and persist in the environment for hundreds of years. This leads to the accumulation of plastic waste, which adversely impacts ecosystems and human health. Access to clean water is essential for human health and environmental sustainability (Arjmandi et al., 2021; Ekane et al., 2021). Water filtration systems are designed to remove contaminants, including particulate matter, organic compounds, and pathogens. Traditional filtration materials, while effective, often result in environmental challenges due to their non-degradable nature and disposal issues. Biodegradable polymers are polymers that can be broken down by natural processes into non-toxic components. Their application in water filtration is a growing as it combines environmental sustainability with effective filtration technology (Hiremath, 2020; Intelligence, 2020). These polymers can reduce environmental damage, aligning with the global thrust towards greener technologies. In response to the growing environmental concerns associated with traditional filtration materials, biodegradable polymers have emerged as a sustainable alternative. Biodegradable polymers are designed to break down into non-toxic components through natural processes, such as microbial activity, oxidation, or hydrolysis (Cazaudehore et al., 2022). This decomposition process reduces the environmental impact of waste materials and supports the principles of a circular economy. Biodegradable polymers, which decompose into non-toxic substances through natural processes, offer a promising solution to the problems associated with conventional filtration media (Khaless et al., 2021). These polymers are derived from renewable resources or designed to break down naturally, reducing their environmental footprint and aligning with the principles of a circular economy. The development and application of biodegradable polymers in represent a significant advancement in sustainable technology (Mamidi et al., 2022). These materials not only offer effective filtration but also address environmental challenges by minimizing waste and reducing the reliance on nonrenewable resources. Biodegradable polymers can be derived from natural sources, such as plant and biopolymers, or engineered to degrade under specific conditions. We will explore the various types of biodegradable polymers, including natural and synthetic options, and examine their mechanisms of action in filtration processes (Phan et al., 2021).

Additionally, we will discuss the latest innovations and applications of these materials, highlighting their effectiveness and potential benefits in different contexts. By focusing on recent developments and practical applications, this review seeks to offer valuable insights into the state-of-the-art in biodegradable polymer technology for purpose of purification (Balla et al., 2021). The objective is to highlight the advancements that have been made, identify current challenges, and provide a forward-looking perspective on the future directions of this emerging field.

2. Types of Biodegradable Polymers

2.1 Natural Biodegradable Polymers

Some of the natural biodegradable polymers is shown in Figure 1 and their sources, properties and applications are elaborated in Table 1.

• Cellulose and its Derivatives

Cellulose is a natural polymer with high tensile strength and biocompatibility. It is abundantly available and can be processed into various forms, including nanocellulose. Cellulose-based materials are used in microfiltration membranes, adsorbents for organic pollutants, and as carriers for active substances in water treatment (Tarazona et al., 2022). Innovations include the development of nanocellulose composites that

offer enhanced filtration efficiency and mechanical stability. These materials show promise in removing fine particles and organic contaminants.

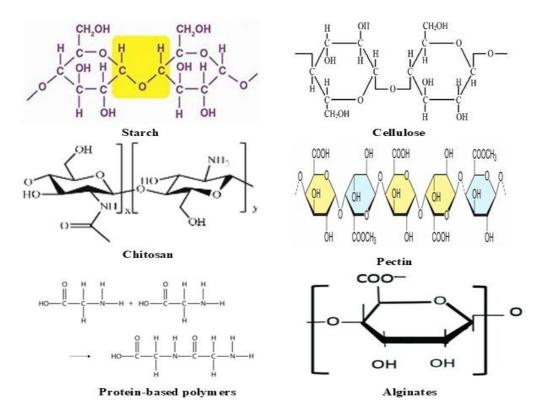


Figure 1. Some natural biodegradable polymers.

• Chitosan

Derived from chitin, chitosan is known for its antimicrobial and flocculating properties. It is biocompatible and can be modified to enhance its functionality. Chitosan is utilized for removing heavy metals, dyes, and pathogens from water. It is often used in combination with other materials to improve performance. Functionalized chitosan composites have been developed to target specific contaminants more effectively (Wu et al., 2021). For example, chitosan-based materials with embedded nanoparticles can enhance adsorption and degradation of pollutants.

Polymer	Source	Properties	Applications
Starch	Corn, potatoes, tapioca	Biodegradable, renewable, versatile	Packaging, biodegradable films, food industry
Cellulose	Wood, cotton	Strong, biodegradable, abundant	Paper products, textiles, pharmaceuticals
Chitosan	Crab and shrimp shells	Biocompatible, antimicrobial	Wound dressings, food preservation, water treatment
Polylactic Acid (PLA)	Corn starch, sugarcane	Biodegradable, transparent, heat- resistant	3D printing, packaging, disposable utensils
Pectin	Citrus fruits, apples	Gel-forming, biodegradable	Food additives, pharmaceuticals, cosmetics
Protein-based polymers	Soy, wheat, milk	Biodegradable, varies with source	Adhesives, coatings, biodegradable films
Alginates	Brown seaweed	Gel-forming, biodegradable	Food industry, pharmaceuticals, wound care
Gum Arabic	Acacia trees	Riodegradable emulsifying	Food industry cosmetics pharmaceuticals

Table 1. Source, properties, and application of biodegradable polymers.

Starch-Based Polymers

Starch is a renewable and cost-effective polymer. It is biodegradable and can be easily processed into various forms for filtration applications. Starch-based polymers are used in filtration membranes and beads, often combined with other materials to enhance their properties. Recent research focuses on cross-linking starch with other polymers to improve mechanical strength and filtration efficiency (Albright III and Chai, 2021). Modified starches with enhanced hydrophobic or hydrophilic properties have also been developed.

2.2 Synthetic Biodegradable Polymers

Some of the Synthetic biodegradable polymers is shown in Figure 2 and their sources, properties and applications are elaborated in Table 2.

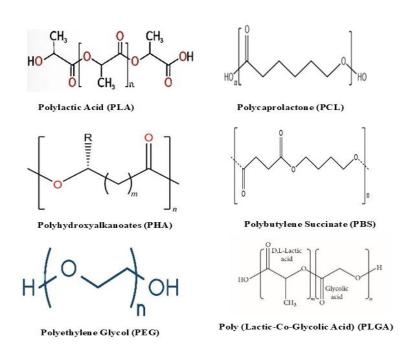


Figure 2. Some synthetic biodegradable polymers.

• Polylactic Acid (PLA)

PLA is derived from renewable resources like corn starch. It is biocompatible and can be engineered to various specifications (Bassyouni et al., 2022). PLA is used in membranes and filter media for water purification. It is particularly useful in applications requiring biodegradable materials with good mechanical properties. Research has led to the development of PLA composites with improved filtration performance and stability. These composites are designed to enhance pore structure and increase contaminant removal efficiency.

• Polyhydroxyalkanoates (PHA)

PHAs are produced by microbial fermentation and are known for their biodegradability in diverse environments. PHAs are employed in filtration membranes and as bio-adsorbents for pollutants. They offer versatility and can be tailored for specific contaminants. Innovations include optimizing PHA properties for selective pollutant removal and integrating PHAs with other materials to enhance performance (Cummings, 2020). Advances in production methods have also reduced costs and improved scalability.

Polymer	Type	Properties	Applications
Polylactic Acid (PLA)	Aliphatic polyester	Biodegradable, good mechanical	3D printing, packaging, disposable
		properties	utensils
Polycaprolactone (PCL)	Aliphatic polyester	Flexible, low melting point, biodegradable	Drug delivery, adhesives, 3D printing
Polyhydroxyalkanoates (PHA)	Biopolymer	Biodegradable, biocompatible, versatile	Packaging, agricultural films, medical devices
Polybutylene Succinate (PBS)	Aliphatic polyester	Biodegradable, good thermal stability	Packaging, disposable items, agricultural films
Polyethylene Glycol (PEG)	Polyether	Biocompatible, soluble in water	Drug delivery, cosmetics, medical applications
Starch-based polymers (e.g., Mater-Bi)	Blends	Biodegradable, derived from starch	Packaging, disposable products, agricultural films
Poly (Lactic-Co-Glycolic	Copolymer	Biodegradable, biocompatible	Drug delivery systems, tissue
Acid) (PLGA)			engineering

Table 2. Different type of synthetic biodegradable polymers.

• Polycaprolactone (PCL)

PCL is a biodegradable polymer with a low melting point and flexible properties. It is used in various applications due to its easy processability. PCL is utilized in filters for removing organic and inorganic pollutants (Gilbertson et al., 2020. It is often used in conjunction with other materials to enhance its properties. Research has focused on improving the degradation rates and filtration performance of PCL-based materials. Enhanced formulations and composite materials are being developed to address specific filtration challenges.

3. Synthesis of Biodegradable Polymer Membranes

The synthesis of biodegradable polymer membranes for water filtration involves various methodologies and considerations to achieve optimal performance and environmental sustainability (Jena et al., 2022). This section outlines the synthesis techniques, materials used, and recent advancements in the development of these membranes.

3.1 Material Selection

• Cellulose-Based Membranes

Derived from plant cell walls, cellulose is a widely available natural polymer. Cellulose can be transformed into various forms, such as microfibrils or nanocellulose, through chemical or mechanical processes (Maćczak et al., 2020). Common methods include dissolution in ionic liquids or solvents, followed by regeneration into membranes. Techniques such as electrospinning or phase inversion are also employed.

• Chitosan-Based Membranes

Chitosan is obtained from chitin, a component of crustacean shells. Chitosan can be chemically modified to enhance its properties, such as increased solubility or functional groups for specific adsorption (Mia et al., 2021). Chitosan membranes are typically prepared via casting from chitosan solutions, followed by cross-linking or blending with other polymers to improve mechanical properties and stability.

• Starch-Based Membranes

Starch is derived from plants, particularly grains and tubers. Starch is often modified through cross-linking or blending with other biodegradable polymers to enhance its mechanical strength and filtration properties (Perveen et al., 2020). Techniques include solution casting, extrusion, and electrospinning, with the addition of plasticizers or cross-linking agents to achieve desired membrane properties.

• Polylactic Acid (PLA) Membranes

PLA is derived from fermented plant sugars, primarily corn starch. PLA can be blended with other biodegradable polymers or nanoparticles to enhance its filtration performance and degradation rate (Russo et al., 2021). PLA membranes are often produced via electrospinning, melt extrusion, or solution casting. The process conditions, such as temperature and solvent choice, are critical for achieving desired membrane properties.

• Polyhydroxyalkanoates (PHA) Membranes

PHAs are produced by microbial fermentation of renewable resources. PHAs can be tailored for specific applications through copolymerization or blending with other biodegradable materials (Ramírez-Estrada, et al., 2022). Techniques include solvent casting, melt processing, and electrospinning. The choice of method depends on the desired membrane structure and properties.

• Polycaprolactone (PCL) Membranes

PCL is a synthetic biodegradable polymer derived from petrochemical sources but is designed to degrade under specific conditions. PCL can be blended with other biodegradable polymers or functionalized to enhance its performance in filtration applications (Simbaña et al., 2020). PCL membranes are typically produced via electrospinning, melt extrusion, or solution casting. Adjustments in processing conditions can control membrane porosity and mechanical properties.

3.2 Synthesis Techniques of Membranes

There are many synthesis techniques. All the techniques are summarizing in **Figure 3**.

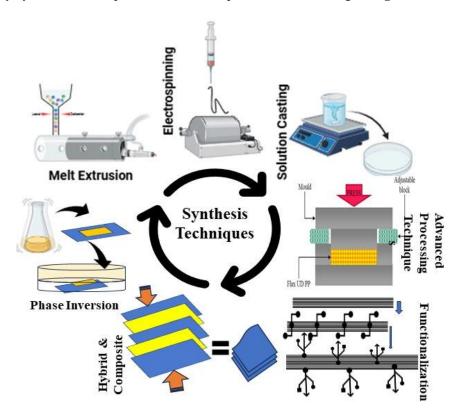


Figure 3. Schematic Illustration of different technique for synthesis of membranes for water filtration.

• Electrospinning

Electrospinning is a versatile technique used to produce nanofibrous membranes with high surface area and porosity (Zhu and Wang, 2020). This method involves applying a high voltage to a polymer solution, which is then drawn into fine fibers that are collected on a substrate. Produces membranes with high surface area and fine pore structure, suitable for microfiltration and ultrafiltration. Commonly used for cellulose, PLA, PHA, and PCL-based membranes.

• Solution Casting

Solution casting involves dissolving the polymer in a suitable solvent and then casting the solution onto a flat surface to form a film. After casting, the solvent is evaporated, leaving behind a solid polymer membrane (Abourehab et al., 2022). Simple and cost-effective method for producing thin, flexible membranes. Widely used for chitosan, starch, and PLA-based membranes.

• Melt Extrusion

Melt extrusion involves melting the polymer and forcing it through a die to form thin sheets or fibers. This method is suitable for polymers that can be melted without degradation (Ekane et al., 2021). Allows to produce large quantities of membranes with consistent properties. Suitable for PCL and PLA membranes, often used in conjunction with other processing techniques.

• Phase Inversion

Phase inversion involves dissolving the polymer in a solvent and then inducing phase separation through immersion in a non-solvent. This process results in a porous membrane structure. Enables control over membrane pore size and structure. Used for cellulose and PLA membranes, particularly for creating asymmetric or composite membranes (Mansoori et al., 2020).

• Hybrid and Composite Membranes

Recent advancements include the development of hybrid composite membranes that combine biodegradable polymers with nanoparticles, inorganic materials, or other polymers to enhance performance (Qi et al., 2020). Incorporating nanoparticles like silver or titanium dioxide to improve antimicrobial properties or blending biodegradable polymers with carbon nanotubes for increased mechanical strength.

• Functionalization

Functionalization of biodegradable polymers involves introducing specific chemical groups or active substances to target contaminants or improve membrane performance (Rafiqah et al., 2021). Functionalizing chitosan with magnetic nanoparticles for enhanced removal of heavy metals or modifying PLA membranes to improve resistance to fouling.

• Advanced Processing Techniques

New processing techniques are being explored to improve the efficiency and scalability of membrane production (Yu et al., 2022). The use of 3D printing to create custom-shaped membranes or advanced casting techniques to produce membranes with complex structures and tailored properties.

4. Classification and Mechanisms of Filtration

There are different types of filtration mechanism are described here which are illustrated in Figure 4.

Figure 4. Diagrammatic representation of different filtration mechanism.

4.1 Physical Filtration

Biodegradable polymers can be processed into membranes that operate on microfiltration and ultrafiltration principles. These membranes separate particles based on size, offering effective removal of suspended solids and microorganisms (Water Treatment Chemicals Market by Type, 2021). Nanocellulose-based membranes and composite materials have been developed to improve pore structure and filtration efficiency. These advancements enable the removal of finer particles and enhance overall performance.

4.2 Chemical Filtration

Chemical filtration involves the adsorption of contaminants by biodegradable polymers. These materials can be functionalized to target specific pollutants, such as heavy metals and organic compounds. Functionalized biodegradable polymers with high selectivity for pollutants have been developed (Shaikh et al., 2021). For instance, chitosan and PHA composites are engineered to enhance adsorption capacity and target specific contaminants more effectively.

4.3 Biological Filtration

Biological filtration utilizes microorganisms embedded in biodegradable polymer matrices to degrade contaminants. This approach combines physical and biological processes to enhance pollutant removal (Sun et al., 2020). Advanced designs integrate living organisms into biodegradable polymers for enhanced degradation. These systems are being optimized for various contaminants and operational conditions.

In exploring the mechanisms and efficacy of filtration processes, adsorption is the process where contaminants adhere to the surface of a filter medium. This mechanism is crucial in removing organic compounds, heavy metals, and other pollutants. Studies show that functionalized biodegradable polymers, such as chitosan-based materials, can adsorb heavy metals and organic pollutants due to their amino and hydroxyl groups. Effective for specific pollutants, such as organic matter and heavy metals, but may struggle with high concentrations or diverse contaminant types.

5. Current Utilizations for Water Filtration

5.1 Industrial Applications

Biodegradable polymers are increasingly used in industrial wastewater treatment systems. They offer advantages such as reduced waste generation and lower environmental impact (Maraveas, 2020). Large-scale applications include the use of biodegradable membranes in textile and pharmaceutical industries. These systems are designed to improve pollutant removal while minimizing environmental impact. Some biodegradable polymers can be used in wastewater treatment systems, for example, as filters or in packaging for treatment chemicals. Wastewater treatment facilities may need to handle biodegradable polymer products that enter the system, ensuring they break down appropriately without causing blockages or other issues. Developing wastewater treatment processes that can better handle and accelerate the degradation of biodegradable polymers. Improving the production and end-of-life management of biodegradable polymers to ensure they are truly sustainable and do not create additional environmental problems (Melchor-Martínez et al., 2022). while biodegradable polymers and wastewater treatment serve different purposes, their integration and the development of improved methods for both can contribute to more sustainable industrial practices and environmental protection.

5.2 Household Water Purification

Compact and affordable biodegradable filters are being developed for household water purification. These filters provide an eco-friendly option for clean water access in domestic settings. Innovations in filter design focus on ease of replacement and disposal (Mamidi et al., 2022). Advances include developing filters with enhanced performance and user-friendly features for household applications. Biodegradable polymers can be used in the development of new treatment technologies, such as biofilters or membranes that are more sustainable and effective. They can be integrated into systems that treat and recycle wastewater, reducing the need for additional plastic materials. Household Water Purification systems are designed to make tap water safe to drink and use by removing contaminants, odors, and impurities. Activated Carbon Filters Remove chlorine, volatile organic compounds (VOCs), and other impurities (Sanchez-Salvador et al., 2021).

Reverse Osmosis (RO) Uses a semi-permeable membrane to remove a wide range of contaminants Purification Uses ultraviolet light to kill bacteria, viruses, and other microorganisms. Biodegradable polymers can be used as filter media in household water purification systems. They offer an eco-friendly alternative to traditional materials. Components of purification systems, such as cartridge casings or filter housings, made from biodegradable polymers can reduce plastic waste. Incorporating biodegradable polymers Filters and Cartridges into water filtration systems can help reduce plastic waste and environmental impact (Khaless et al., 2021). Biodegradable polymers can improve the efficiency and sustainability of wastewater treatment processes, making them more eco-friendly. Developing household water purification products with biodegradable components ensures that even after disposal, the impact on the environment is minimized. Integrating biodegradable materials into home-based water recycling systems can help manage and purify wastewater more sustainably (Janesch et al., 2020). Ongoing research is needed to improve the performance of biodegradable polymers in water treatment applications and to ensure their effective degradation in various environments. Emphasizing the use of biodegradable polymers in a circular economy approach, where materials are reused, recycled, and responsibly disposed of, contributes to more sustainable water management.

5.3 Emergency and Humanitarian Aid

Biodegradable water filters are being deployed in emergency and humanitarian situations (Ibrahim et al., 2021). These filters offer a quick and sustainable solution for providing clean water in disaster-stricken

areas. Lightweight and portable filtration solutions are being developed for rapid deployment. These filters are designed for ease of use and efficient performance in challenging conditions.

6. Challenges and Future Directions

6.1 Performance vs. Degradation

Balancing the filtration efficiency with the rate of degradation is a significant challenge. Future research should focus on optimizing polymer formulations to ensure both high performance and sustainable degradation. Some biodegradable polymers may not perform as effectively as traditional materials in specific applications, such as filtration or treatment processes (Hiremath, 2020). Their efficiency can be compromised if they degrade too quickly or too slowly under operational conditions. Achieving controlled and predictable degradation is challenging. Biodegradable polymers may not degrade uniformly or might require specific conditions (e.g., temperature, moisture) that are not always present in wastewater treatment systems. If biodegradable polymers do not degrade completely, they could still contribute to microplastic pollution. Ensuring complete degradation without leaving harmful residues is essential. Proper disposal and management of biodegradable polymers are crucial to prevent unintended environmental impact. They need to be processed in facilities equipped to handle their specific degradation requirements.

6.2 Cost and Scalability

The cost of producing biodegradable polymers and scaling up production remains a challenge. Advances in material science and manufacturing processes are needed to make these technologies more economically viable (Intelligence, 2020). Biodegradable polymers can be more expensive than conventional plastics, which might limit their widespread adoption. Cost-effective production methods need to be developed to make them competitive. Scaling up the production of biodegradable polymers and integrating them into existing wastewater treatment infrastructure can be complex and costly.

6.3 Environmental Impact

While biodegradable polymers reduce plastic waste, their environmental impact should be carefully assessed (Gholampour and Ozbakkaloglu, 2020). Understanding the end-of-life behaviour and potential byproducts of these materials is crucial. There is a need for standardized definitions and testing methods for biodegradable polymers to ensure they meet performance and environmental criteria. Regulatory frameworks may lag technological advancements, creating uncertainty for manufacturers and users. Biodegradable Polymers are less stable in harsh environmental conditions (e.g., extreme pH, high temperatures), which can affect their filtration performance. Degrades over time, which can be both an advantage (less long-term waste) and a limitation (reduced service life). Its enhancements like incorporating nanoparticles or modifying polymer structures to improve adsorption capabilities. Combining biodegradable polymers with other materials to enhance stability and filtration performance. It is effective for removing or reducing microorganisms, especially if combined with antimicrobial agents. Ensuring that biodegradable polymers meet certifications for environmental safety and performance is necessary for their acceptance and implementation (Christian, 2020). Developing new treatment technologies that integrate biodegradable polymers effectively, such as in biofilters or membranes, can improve sustainability and efficiency. Implementing advanced monitoring systems to track the degradation of polymers in real-time can help manage and optimize their performance in treatment systems.

7. Conclusion

Advancements in biodegradable polymers for water filtration mark a significant step forward in addressing both environmental concerns and water quality challenges. Recent innovations demonstrate that these materials not only provide effective filtration but also help mitigate the environmental impact of traditional,

non-degradable filters. The development of advanced biodegradable polymers—combining both natural and synthetic components—has led to improvements in performance, durability, and cost-effectiveness of filtration systems. The versatility of these materials is evident in applications ranging from municipal water treatment to personal water purification systems. Moreover, the integration of innovative fabrication techniques, such as electrospinning and 3D printing, has expanded the potential of biodegradable polymers, enabling the creation of customized filtration solutions. However, continued research and development are essential to overcome challenges related to scalability, cost-effectiveness, and the long-term environmental impact of these materials. As the field evolves, interdisciplinary collaboration and investment in emerging technologies will be critical to unlocking the full potential of biodegradable polymers and ensuring their widespread adoption in sustainable filtration systems. Overall, the future of biodegradable polymers is promising, offering a pathway toward more sustainable and environmentally friendly solutions for ensuring clean water access.

Conflict of Interest

There is no conflict of interest and financial involvements for publishing this research.

Acknowledgments

There is no funding support for this to authors.

References

- Abourehab, M.A., Rajendran, R.R., Singh, A., Pramanik, S., Shrivastav, P., Ansari, M.J., Manne, R., Amaral, L.S., & Deepak, A. (2022). Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art. *International Journal of Molecular Sciences*, 23(16), 9035.
- Albright III, V.C., & Chai, Y. (2021). Knowledge gaps in polymer biodegradation research. *Environmental Science & Technology*, 55(17), 11476-11488.
- Arjmandi, R., Yıldırım, I., Hatton, F., Hassan, A., Jefferies, C., Mohamad, Z., & Othman, N. (2021). Kenaf fibers reinforced unsaturated polyester composites: A review. *Journal of Engineered Fibers and Fabrics*, 16, https://doi.org/10.1177/15589250211040184.
- Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N.D., & Bikiaris, D.N. (2021). Poly (lactic Acid): a versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. *Polymers*, *13*(11), 1822.
- Bassyouni, M., Zoromba, M.S., Abdel-Aziz, M.H., & Mosly, I. (2022). Extraction of nanocellulose for eco-friendly biocomposite adsorbent for wastewater treatment. *Polymers*, 14(9), 1852.
- Buta, M., Hubeny, J., Zieliński, W., Harnisz, M., & Korzeniewska, E. (2021). Sewage sludge in agriculture—the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops—a review. *Ecotoxicology and Environmental Safety*, 214, 112070. https://doi.org/10.1016/j.ecoenv.2021.112070.
- Cazaudehore, G., Guyoneaud, R., Evon, P., Martin-Closas, L., Pelacho, A.M., Raynaud, C., & Monlau, F. (2022). Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. *Biotechnology Advances*, *56*, 107916. https://doi.org/10.1016/j.biotechadv.2022.107916.
- Christian, S.J. (2020). Natural fibre-reinforced noncementitious composites (biocomposites). In *Nonconventional and vernacular construction materials* (pp. 169-187). Woodhead Publishing. US. https://doi.org/10.1016/B978-0-08-102704-2.00008-1.

- Cummings, I. (2020). Applicability of analytical tools, test methods and models for polymer risk assessment. Belgium.
- Ekane, N., Barquet, K., & Rosemarin, A. (2021). Resources and risks: perceptions on the application of sewage sludge on agricultural land in Sweden, a case study. *Frontiers in Sustainable Food Systems*, 5, 647780. https://doi.org/10.3389/fsufs.2021.647780.
- Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. *Journal of Materials Science*, 55(3), 829-892.
- Gilbertson, L.M., Pourzahedi, L., Laughton, S., Gao, X., Zimmerman, J.B., Theis, T.L., Westerhoff, P., & Lowry, G.V. (2020). Guiding the design space for nanotechnology to advance sustainable crop production. *Nature Nanotechnology*, 15(9), 801-810.
- Hiremath, S.S. (2020). Natural fiber reinforced composites in the context of biodegradability: a review. *Encyclopedia of Renewable and Sustainable Materials*, *5*, 160-178.
- Ibrahim, N.I., Shahar, F.S., Sultan, M.T.H., Shah, A.U.M., Safri, S.N.A., & Mat Yazik, M.H. (2021). Overview of bioplastic introduction and its applications in product packaging. *Coatings*, 11(11), 1423.
- Intelligence, M. (2020). Mordor intelligence. Obtenido de https://www. mordorintelligence. com/es/industry-reports/global-protein-supplements-market-industry.
- Janesch, J., Jones, M., Bacher, M., Kontturi, E., Bismarck, A., & Mautner, A. (2020). Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. *Reactive and Functional Polymers*, *146*, 104428. https://doi.org/10.1016/j.reactfunctpolym.2019.104428.
- Jena, P.K., Mohanty, J.R., & Nayak, S. (2022). Effect of surface modification of vetiver fibers on their physical and thermal properties. *Journal of Natural Fibers*, 19(1), 25-36.
- Khaless, K., Achiou, B., Boulif, R., & Benhida, R. (2021). Recycling of spent reverse osmosis membranes for second use in the clarification of wet-process phosphoric acid. *Minerals*, 11(6), 637. https://doi.org/10.3390/min11060637.
- Maćczak, P., Kaczmarek, H., & Ziegler-Borowska, M. (2020). Recent achievements in polymer bio-based flocculants for water treatment. *Materials*, 13(18), 3951. https://doi.org/10.3390/ma13183951.
- Mamidi, N., Delgadillo, R.M.V., Barrera, E.V., Ramakrishna, S., & Annabi, N. (2022). Carbonaceous nanomaterials incorporated biomaterials: The present and future of the flourishing field. *Composites Part B: Engineering*, 243, 110150. https://doi.org/10.1016/j.compositesb.2022.110150.
- Mamidi, N., García, R.G., Martínez, J.D.H., Briones, C.M., Martinez Ramos, A.M., Tamez, M.F.L., Valle, B.G.D., & Segura, F.J.M. (2022). Recent advances in designing fibrous biomaterials for the domain of biomedical, clinical, and environmental applications. *ACS Biomaterials Science & Engineering*, 8(9), 3690-3716.
- Mansoori, S., Davarnejad, R., Matsuura, T., & Ismail, A.F. (2020). Membranes based on non-synthetic (natural) polymers for wastewater treatment. *Polymer Testing*, 84, 106381. https://doi.org/10.1016/j.polymertesting.2020.106381.
- Maraveas, C. (2020). Production of sustainable and biodegradable polymers from agricultural waste. *Polymers*, 12(5), 1127.
- Melchor-Martínez, E.M., Macías-Garbett, R., Alvarado-Ramírez, L., Araújo, R.G., Sosa-Hernández, J.E., Ramírez-Gamboa, D., & Parra-Saldívar, R. (2022). Towards a circular economy of plastics: an evaluation of the systematic transition to a new generation of bioplastics. *Polymers*, *14*(6), 1203. https://doi.org/10.3390/polym14061203.
- Mia, M.S., Yao, P., Zhu, X., Lei, X., Xing, T., & Chen, G. (2021). Degradation of textile dyes from aqueous solution using tea-polyphenol/Fe loaded waste silk fabrics as Fenton-like catalysts. *RSC Advances*, *11*(14), 8290-8305.
- Perveen, K., Masood, F., & Hameed, A. (2020). Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. *International Journal of Biological Macromolecules*, 144, 259-266.

- Phan, D.N., Khan, M.Q., Nguyen, N.T., Phan, T.T., Ullah, A., Khatri, M., & Kim, I.S. (2021). A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. *Carbohydrate Polymers*, 252, 117175. https://doi.org/10.1016/j.carbpol.2020.117175.
- Qi, X., Liu, J., Wang, C., Li, S., Li, X., Liang, Y., & Sarfaraz, K. (2020). Synthesis of the hydrophobic cationic polyacrylamide (PADD) initiated by ultrasonic and its flocculation and treatment of coal mine wastewater. *Processes*, 8(1), 62. https://doi.org/10.3390/pr8010062.
- Rafiqah, S.A., Khalina, A., Harmaen, A.S., Tawakkal, I.A., Zaman, K., Asim, M., & Lee, C.H. (2021). A review on properties and application of bio-based poly (butylene succinate). *Polymers*, *13*(9), 1436. https://doi.org/10.3390/polym13091436.
- Ramírez-Estrada, A., Mena-Cervantes, V.Y., Mederos-Nieto, F.S., Pineda-Flores, G., & Hernández-Altamirano, R. (2022). Assessment and classification of lignocellulosic biomass recalcitrance by principal components analysis based on thermogravimetry and infrared spectroscopy. *International Journal of Environmental Science and Technology*, 19, 2529-2544.
- Russo, T., Fucile, P., Giacometti, R., & Sannino, F. (2021). Sustainable removal of contaminants by biopolymers: a novel approach for wastewater treatment. Current state and future perspectives. *Processes*, *9*(4), 719. https://doi.org/10.3390/pr9040719.
- Sanchez-Salvador, J.L., Balea, A., Monte, M.C., Negro, C., & Blanco, A. (2021). Chitosan grafted/cross-linked with biodegradable polymers: A review. *International Journal of Biological Macromolecules*, 178, 325-343.
- Shaikh, S., Yaqoob, M., & Aggarwal, P. (2021). An overview of biodegradable packaging in food industry. *Current Research in Food Science*, 4, 503-520.
- Simbaña, E.A., Ordóñez, P.E., Ordóñez, Y.F., Guerrero, V.H., Mera, M.C., & Carvajal, E.A. (2020). Abaca: Cultivation, obtaining fibre and potential uses. In Kozłowski, R.M., & Talarczyk, M.M. (eds) *Handbook of Natural Fibres* (pp. 197-218). Woodhead Publishing. Ibarra, Imbabura, Ecuador.
- Sun, S., Yao, H., Fu, W., Xue, S., & Zhang, W. (2020). Enhanced degradation of antibiotics by photo-fenton reactive membrane filtration. *Journal of Hazardous Materials*, 386, 121955.
- Tarazona, N.A., Machatschek, R., Balcucho, J., Castro-Mayorga, J.L., Saldarriaga, J.F., & Lendlein, A. (2022). Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio) economy concept. MRS Energy & Sustainability, 9(1), 28-34.
- Water Treatment Chemicals Market by Type (Coagulants & Flocculants, Corrosion Inhibitors, Scale Inhibitors, Biocides & Disinfectants, Chelating Agents), End-Use (Residential, Commercial, Industrial), and Region Global Forecast to 2026, Pune: Markets and Markets, 2021.
- Wu, F., Misra, M., & Mohanty, A.K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. *Progress in Polymer Science*, 117, 101395. https://doi.org/10.1016/j.progpolymsci.2021.101395.
- Yu, R., Zhang, H., & Guo, B. (2022). Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. *Nano-Micro Letters*, 14, 1-46.
- Zhu, J., & Wang, C. (2020). Biodegradable plastics: green hope or greenwashing?. *Marine Pollution Bulletin*, 161, 111774. https://doi.org/10.1016/j.marpolbul.2020.111774.

The original content of this work is copyright @ Ram Arti Publishers. Uses under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

Publisher's Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps and institutional affiliations.