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Abstract 

The solute transport modeling is presented for the movement of various decay parameters under degradation situations of solute 
transport phenomena. In this present study analytical solution of solute transport modeling is presented for semi-infinite 

homogeneous geological formation using the Laplace transform technique. Uniform solute segmentation is assumed initially at the 

geological formation. The one end of the geological formation is polluted by temporally dependent sinusoidal source segmentation. 

At the other end of the domain solute segmentation flux is assumed to be zero. The concept of dispersion coefficient is directly 

proportional to the initial outflow velocity used for analytical results. The efforts of distinct velocity patterns (i.e.; exponential 
decreasing and sinusoidal) are significantly used to observe the solute segmentation behaviour. The solute segmentation distribution 

increases with time and decreases with space. The Relative Percent Error (RPE) is used to check the accuracy of the solute 

segmentation with respect to time period. The obtained results may be useful to maintain the quality of groundwater resources. 
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1. Introduction 
Solute transport through geological formations from various direct and indirect source origins has been 
important research for the management of groundwater quality over the decades. Studying the solute 
contaminant transport problems through groundwater geological formations needs the use of suitable 
modeling tools. Abundant mathematical models have been developed to recognize the transport of 
contaminants through groundwater geological formations while considering the mass and transport of 
pollutants mixed in the groundwater reservoir. There is a partial differential equation called the Advection 
Dispersion Equation (ADE) which is extensively used in fields of solute segmentation modeling for 
effective demonstration for transport behavior of solute contaminants in groundwater systems. The solute 
spread in the direction of groundwater flow may acquire a higher segmentation than that of spreading 
against the direction of flux. Analytical solution of ADE is an important and effective mode with variability 
of usages, such as endorsed with numerical one, providing an estimated breakdown of solute segmentation, 
execution of sensitivity analysis for varied parameters strikes the advancement of contaminant 
segmentation. Batu (1989), Chen et al. (2008) and Gao et al. (2010) established the various closed-form 
solutions with the analysis of the effects of decay parameters for solute transport modeling equation for 
groundwater reservoirs. They have used seepage velocity is straight related to the preliminary outflow 
velocity and dispersion coefficient is straight related to the initial outflow velocity concept for obtained 
results. The various mathematical tools are used to solve solute transport modeling equations. Basha and 
El Habel (1993) discussed the exact result of a one-dimensional solute transport model equation with an 
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analysed transient-dependent dispersion coefficient for an infinite groundwater geological formation. The 
investigation carried out is restricted to the asymptotic dispersion coefficient. It is evident from the literature 
that the higher mathematical models with time-dependent dispersion functions have not been explored so 
far to simulate solute transport through heterogeneous media. However, the key reactions for solute 
segmentation in groundwater reservoirs are symmetry-controlled sorption reactions and irreversible first-
order reactions. Ahmadi et al. (1998) discussed the solute transport distribution model for describing the 
non-equilibrium dispersion phenomenon in heterogeneous groundwater geological formations. Also, a 
comparison of exact results with numerical experiments was demonstrated for stratified groundwater 
geological formation to describe most of the large-scale non-symmetry behaviour of bimodal heterogeneous 
structures, an extensive variety of Peclet numbers and diffusion/dispersion. This study was used to predict 
groundwater contamination in the different complex geometry of groundwater reservoirs. 
 

The heterogeneity parameter in physical and chemical belongings controlled the segmentation of reactive 
solutes in groundwater geological formation. The spatial variation of physical and chemical heterogeneity 
is responsible for spatial-dependent solute transport. Srivastava et al. (2002) described exact solution of 
one-dimensional solute transport classical equation with spatial variation of reactive decay transport 
parameter. To represent the heterogeneity in different physical transport parameters they used an 
exponential increasing dispersivity function to illustrate various rates constants on the transport of 
groundwater. 
 

However, for problems in groundwater remediation exact and approximate solutions are extended to depict 
the mass and segmentation of solute pollutants in groundwater systems. Singh and Das (2015) investigated 
the closed-form and numerical solutions of one-dimensional solute segmentation equations in semi-infinite 
heterogeneous geological formations by using a spatial dispersion coefficient. Moreover, closed-form and 
approximate solutions for exponential decreasing velocity distribution were compared with the root mean 
square method. This study was helpful in managing the quality of groundwater reservoirs. 
 
However, Singh et al. (2016) established the exact and approximate solutions for inlet source contamination 
introduced at the splitting time domain for the finite length of the geological formation. The outcome result 
of solute contamination segmentation introduced for different velocity patterns. In general, solute 
contaminant segmentation is not easily established due to detection based on a relatively small volume of 
geological formation. Haslauer et al. (2017) described the nature of solute transport modeling over a dataset 
of different underlying processes, spatial dependent saturated hydraulic conductivity with macroscale and 
microscale for heterogeneous geological formation. The solute transport behaviour was influenced by the 
combined effects of each macroscale and microscale for the smallest time measure before the transverse 
mixing of solute occurs. Most of solute contaminants initiate from an unaccomplished arrangement of 
wastes into the ground surface in the form of point and non-point sources contamination. The reactive solute 
exists and their allied actions vary from zone to zone depending on the geological formation origins of the 
present bedrock. Chen et al. (2019) described the exact solution of the agro-eco-hydrological with solute 
transport equation subject to the equilibrium-controlled sorption. The developed closed-form solution 
measures the sorption mechanisms of each individual reactive transport equation, with lower segmentation 
predicted for an increased value of the kinetic sorption rate. This study illustrated that the reactive and non-
reactive solutes controlled the solute contaminant segmentation into the layered soil formation. 
 
However, Guleria and Swami (2018) investigated the approximate solution of mobile and immobile non-
reactive solute transport equations with transient-dependent dispersion factors for the heterogeneous 
geological system. Moreover, the inherent uncertainty was estimated for solute segmentation in the mobile-
immobile model with the use of the transient-dependent dispersion function. The transient dependent 
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dispersion endorsed to the macro-level properties from the heterogeneity of sub-plane at the ground level. 
Das and Singh (2019) established closed-form exact and approximate results of solute transport equation 
with transient dispersion coefficient for distinct chemical constraints mounting into groundwater reservoir. 
They were found closed and numerical results of approximately the same nature. Moreover, Hosseini et al. 
(2020) developed the approximate result of a solute segmentation equation with variable density based on 
the framework of the prolonged finite element method to emulate the density-driven mass flow over the 
fractured geological formation. Moreover, the impacts of distinct constraints of the fracture geological 
formation, such as the pore and interconnectivity, such as the permeability and diffusion are also 
investigated. This study helps to signify the characteristics of the pore in the solute segmentation 
distribution. 
 
Das et al. (2021) discussed a one-dimensional solute segmentation equation in the presence of source/sink 
term for a homogeneous semi-infinite saturated geological system. Moreover, the result of the solution was 
explored the influence of porosity, density and zero-order production terms in the groundwater geological 
formation. This study helps to the impact of distinct characteristics of groundwater reservoir to predict the 
solute segmentation along groundwater reservoirs. Nadella et al. (2023) expressed the approximate result 
of the one-dimensional unsteady solute segmentation equation for streams and channels enforced with 
several points loading with the impact of first-order decay term. The obtained results assist in catching the 
longitudinal variant of segmentation in a cell exactly as well as permit a good estimation of its longitudinal 
fluxes at the cell boundaries. Li et al. (2023) investigated the closed result for the solute transport model 
equation on the impact of diffusion, and adsorption in a large strain aquitard formation. They have 
significantly observed the larger leakage coefficient of aquitard through breakthrough time between the 
equivalent rigid medium and large strain medium. Many studies have been published concerning solute 
contaminant transport through geological formation. They are mixed to one another, mainly in terms of 
considered parameters and their dependency over space and time. Morel and Graf (2023) described the 
solute transport modeling behaviour in the presence of free advective density flow under the saturated 
condition of geological formation. They also analysed the solute transport nature for the unsaturated zone 
in respect of the infiltration rates potential of solute particles. Butler et al. (2023) introduced the impact of 
solute distribution patterns for both one-dimensional and radial flow in the presence of friction behaviour 
of dispersion. The impact of various dispersity was also explored to analyse the behaviour of solute patterns 
in heterogeneous geological formations for analytical and numerical results. Chang et al. (2024) explored 
the displacement variance of a two-dimensional solute transport problem for heterogeneous porous 
formation with the help of the stochastic method. They found the nature of solute transport in the mean 
flow direction increases with respect to hydraulic conductivity and thickness of the aquifer. 
 
The solute exchange in the geological formation is a significant procedure influencing groundwater flow 
and solute contaminant flow. This paper aims to study the solute transport model with the impact of decay 
constraints for solid-liquid interphases inhomogeneous semi-infinite geological formations. Moreover, 
linear isotherm is described for inventing solute contaminant transport in between solid-liquid interphase. 
Initially, the geological formation was polluted with uniform initial source segmentation. At the inlet of the 
boundary, the transient sinusoidal source with a combination of uniform source segmentation is assumed 
whereas at the other boundary of the geological formation solute flux is taken to be zero. The analytical 
solution was developed by using Laplace Transform and by using distinct transformations. The solute 
segmentation pattern is developed for different temporally dependent velocity patterns with values of 
density and porosity values of distinct geological formations. Also, the solute segmentation is depicted to 
observe significantly the impact of various decay, and biodegradation parameters. The Relative Percent 
Error (RPE) is used to check the accuracy of the solute segmentation with respect to time period. The model 
is also validated with the data from existing research work. The obtained results are useful for controlling 
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groundwater tools and management. 
 

2. Mathematical Formulation 
The solute contamination transport for geological formation is usually modelled by assuming a temporally 
dependent average outflow velocity and solute dispersion with impacts of various decay parameters in 
groundwater reservoirs. Mathematically, the differential equation for a semi-infinite homogeneous 
geological formation in solid-liquid interphase can be written as (Batu, 2005), 

2

2

c s c u c q
D s c

t t x x

 


   

   
+ = − − +

   
                                                                                                            (1) 

 

where, 2 1D L T −  
 is the spatially dispersion coefficient (i.e. demonstrating along the flow of groundwater),

3c ML−  
is the dispersed solute segmentation in the liquid stage, 1s MM −  

 is the dispersed solute 

segmentation in the solid stage, 3ML −  
is the bulk solidity of the porous medium 1u LT −  

is the unsteady 

sliding pore outflow velocity,  x L  is a spatially direction of the groundwater flow,  t T  is time, 1T −    is 

the first order decay constant, 1q T −    is the decay rate constant,   is the porosity of the distinct geological 

formation such as slit, clay and gravel. 
 
The model equation described the solute contaminant segmentation into the groundwater geological 
formation in the form of solid liquid interphase. 
 
The simplest expression of linear isotherm for the relationships among the solid liquid interphase can be 
written as 

ds k c=                                                                                                                                                         (2) 

 

where, 3 1

dk L M −    is the distribution coefficient. 

 
In this present study we considered that the initially the geological formation is not solute free.  
 
At the starting of analysis i.e., at time t = 0 uniform solute segmentation initially is taken into consideration 
at time t = 0 into the geological formation. 

( , ) ; 0, 0ic x t c x t=  =                                                                                                                             (3) 

 

where, 3

ic ML−    initial solute segmentation. 

 
As periodically movement of solute particles from subsurface to groundwater (e.g.; industrial waste 
material disposed on subsurface on periodic manure) some new solute particles may be successively added 
according to the strength of the source while some solute particle absorbed/adsorbed according to the 
strength of the solute. In order to analyse such type impact of sources one should consider sinusoidal source 
condition at the inlet of the boundary which monitors the changes in the groundwater quality and resources. 
 
At the inlet of the geological formation i.e., at x = 0 the boundary of the domain affected by the temporally 
dependent sinusoidal source with the impact of uniform source segmentation is taken into consideration 
and mathematically expressed as: 
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0( , ) (1 sin t); 0, 0c x t c x t= − =                                                                                                                 (4) 

 

where, 3

0c ML−  
 is uniform solute source segmentation and 1T −  

 is biodegradation decay parameters. 

 
At the other outlet of the geological formation i.e., x→  the solute segmentation flux is assumed to be 

zero 

0; , 0
c

x t
x


= → 


                                                                                                                                     (5) 

 
The physical system of the problem given in Figure 1. 
 

 
 

Figure 1. Physical system of the problem. 

 
Using Equation (2), Equation (1) written as 

2

2

c c u c
R D c

t x x



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= − −
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                                                                                                                              (6) 

 

where, 1 dR k




 
= + 
 

                                                                                                                                 (7) 

 
Retardation factor from which the rate of desorbed/sorbed solute on the solid liquid interphases is 
considered.  

and d

q
k


 

 

 
= − 
 

                                                                                                                                  (8) 

 
For exact solution here seepage velocity is straight related to the preliminary outflow velocity and 
dispersion coefficient is straight related to the initial outflow velocity (Freeze and Cherry, 1979), 

( )0u u f mt=                                                                                                                                                (9) 

 
and Dαu, i.e., D = αu, where α is constant which depends upon the physical properties of the pore in 
homogeneous geological formation. After using the value of u, we have 

( )0D D f mt=                                                                                                                                             (10) 

and 
0 ( )f mt =                                                                                                                                         (11) 
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where, 1

0u LT −  
 and 2 1

0D L T −  
 are known as initial outflow velocity and initial dispersion measurement 

respectively, where, 1m T −  
 is the flow interrupt measurement. 

 
Now, using Equations (9), (10) and (11), Equation (6) written as 

2

0
0 02( )

uR c c c
D c

f mt t x x




  
= − −
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                                                                                                                 (12) 

 
By presenting a different time variable as  

0
( )

t

T f mt dt =                                                                                                                                           (13) 

 
Equation (12) written as 

2

0
0 02

uc c c
R D c

T x x




  
= − −
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(14) 
 
By presenting non-dimensional variables as 

2

0 0 0 0

2

0 0 0 0

, , ,
xu T u Dc

C X T
c D D u





= = = =                                                                                                       (15) 

 
Equation (14) becomes, 

2

2

1C C C
R C

T X X




  
= − −
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                                                                                                                             (16) 

 
The initial and boundary conditions given in Equation (3), Equation (4), and Equation (5) can be written in 
the non-dimensional form as: 

0

( , ) ; 0, 0ic
C X T X T

c
=  =                                                                                                                         (17) 

( , ) 1 sin ; 0, 0C X T T X T = − =                                                                                                           (18) 

where, 0 0

2

0

D

u


 = . 

0; , 0
C

X T
X


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
                                                                                                                                 (19) 

 
By presenting a different transformation as 

1 1
( , ) ( , )exp

2 4

X
C X T K X T T

R
 

  

  
= − +  

  

                                                                                                 (20) 

 
Equation (16) becomes, 

2

2

K K
R

T X

 
=

 
                                                                                                                                                (21) 

 
With the help of Laplace integral transform technique subjects to initial and boundary conditions given in 
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Equation (17) - (19) the desired closed form solution can be written as, 

1 2 3 2

0 0

1 1 1
( , ) ( , ) ( , ) ( , ) exp exp

4 2 2 4

i ic c X X
C X T A X T A X T A X T T T

c c R R
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    

       
= − − + − − +     

     

        (22) 

where, 

( ) ( )1
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*1 1

4
Q
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 

 

 
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3. Results and Discussions 

3.1 Interpretation of Results 

The analysis of solute segmentation in groundwater movement depends upon the parameters of different 
geological formation such as porosity, density, decay constant term, first order decay term. The closed 
solution obtained in Equation (22) analysed for the given group of inputs data (Singh et al., 2009): 

2

0 0 00.01 / , 1.0 / , 0.1 / year, 0.8 / year, 1.80( ), 1.63( ), 1.65( ),ic mg l c mg l u km D km slit clay gravel= = = = =

*0.35( ), 0.40 ( ), 0.32( ), 0.002 / year, 0.007 / year, 0.005 / year, 0.5,dslit clay gravel w q k = = = = =

5.5, 0.03 / year.k m= =  

 
The two different velocity pattern are used for graphical outcomes of results in Equation (22), 

(i) Exponential decreasing pattern ( ) kmtf mt e−=                                                                                      (27) 

2

0

0

1 kmtu
T e

D km

− = −                                                                                                                                          (28) 

 

(ii) Sinusoidal pattern ( ) ( )1 sinf mt kmt= −                                                                                             (29) 

2

0

0

cos 1u kmt
T t

D km km

 
= + − 

 
                                                                                                                           (30) 

 

The analysis of solute segmentation distribution represented for fixed interval of domain 0 1x   at time 
interval t = 1 year, 2 year, 3 year respectively for distinct geological systems with their density and porosity 
values. The graphical representations of solute concentrationC depicts against the distance X using 

MATLAB software. 
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3.2 Analysis & Discussions of Results 
The solute segmentation distribution depicts for clay geological system for exponential decreasing velocity 
pattern with their averaging porosity and density values at time intervals t = 1 year, 2 year, 3 year 
respectively in Figure 2. Initially, at the geological formation the solute segmentation distribution originated 
from uniform source for all time periods. The solute segmentation distribution increases with increasing 
time values whereas the solute segmentation pattern follows declining character with respect to the space. 
 

 
 

Figure 2. Solute segmentation pattern for clay geological formation for exponential decreasing velocity . 

 
The solute segmentation distribution depicts for slit geological formation with their porosity and density 
values at time intervals t = 1 year, 2 year, 3 year respectively in Figure 3 for exponential decreasing velocity 
pattern. The solute segmentation distribution pattern increases with increasing time values whereas the 
solute segmentation pattern follows declining character with respect to the space. The declining character 
of solute segmentation faster for time t = 1 year as compare to the other solute segmentation pattern. 
However, at the end of geological formation solute segmentation values achieves its least segmentation 
values for all time periods. 

 

 
 

Figure 3. Solute segmentation pattern for slit geological formation for exponential decreasing velocity . 
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The solute segmentation distribution depicts for gravel geological formation with their porosity and density 
values at time interval t = 1 year, 2 year, 3 year respectively in Figure 4 for exponential decreasing velocity 
pattern. The solute segmentation distribution pattern increases with increasing time values whereas the 
solute segmentation pattern follows declining character with respect to the space. The decreasing nature of 
solute segmentation faster for time t = 1 year as compare to the other solute segmentation patterns. However, 
at the end of geological formation solute segmentation values achieves its least solute segmentation values 
for all time periods. 

 

 
 

Figure 4. Solute segmentation pattern for gravel geological formation for exponential decreasing velocity. 

 
The solute segmentation distribution depicts for gravel geological formation with their porosity and density 
values at time interval t = 1 year, 2 year, 3 year respectively in Figure 5 for sinusoidal velocity pattern. The 
solute segmentation distribution pattern increases with increasing time values whereas the solute 
segmentation pattern follows declining character with respect to the space. The decreasing nature of solute 
segmentation faster for time t = 1 year as compare to the other solute segmentation pattern. However, as 
compare the Figure 4 and Figure 5 the solute segmentation values for gravel medium attains the least values 
at each of the time periods in exponential decreasing velocity pattern as compare to sinusoidal velocity 
pattern. 
 

 
 

Figure 5. Solute segmentation pattern for gravel geological formation for sinusoidal velocity. 
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The velocity pattern of groundwater flow is an important role for solute segmentation distribution into 
groundwater reservoir. The presence of solute is depending upon the velocity of groundwater contaminant 
flow. The solute segmentation for distinct patterns of velocity of clay geological formation is depicts in 
Figure 6. The solute segmentation slightly takes minimum values at exponential decreasing velocity pattern 
for each of the time interval as compare to the sinusoidal velocity pattern. The solute segmentation 
distribution values take the minimum values at each point of space at the end of the geological formation 
for both the velocity patterns. 

 

 
 

Figure 6. Comparison of contaminant segmentation distribution for clay geological formation with sinusoidal and 

exponential decreasing velocity pattern. 
 

 

The average porosity and density values of distinct geological formations gives the impact of solute 
segmentation distribution pattern. The same minimum solute segmentation distribution attains in slit and 
gravel formations as compare to the clay formations. However, maximum solute segmentation patterns 
achieve in clay medium. However, from Figure 7 all the solute segmentation distribution pattern for clay, 
slit and gravel geological formation achieves its least harmless solute segmentation values at the end of the 
domain. 
 

 
 

Figure 7. Comparison of contaminant segmentation pattern for different geological formation with uniform time. 
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The biodegradation decay parameter   represents the fluctuation rate of biodegradation term presence in 

the geological formation. The solute segmentation predicts in Figure 8 with the varying value of 
biodegradation decay parameter for gravel geological formation for fixed time period t = 1 year. The solute 
segmentation variations follow same rate for both values of biodegradation decay parameter. Initially slight 
variation of solute concentration observed but beyond some distance it shows the same decreasing nature 
at each of the distance. 
 

 
 

Figure 8. Comparison of contaminant segmentation pattern for different value of the zero order production rate. 

 
The surface concentration distribution of the gravel medium is depicting in Figure 9 for exponential 
decreasing velocity pattern. It’s observed that the solute segmentation increase in respect of time whereas 
decreasing trends shows in respect of distance. 
 
Similarly, the surface concentration distribution of the clay medium is depicting in Figure 10 for 
exponential decreasing velocity pattern. It’s observed that the solute segmentation increase in respect of 
time whereas decreasing trends shows in respect of distance. 
 

 
 

Figure 9. Surface concentration distribution pattern for gravel medium. 
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Figure 10. Surface concentration distribution pattern for clay medium. 

 
The comparison of concentration values for the distinct geological formations (i.e.; gravel, slit and clay) 
are tabulated in respect of distinct velocity patterns in Table 1, Table 2 and Table 3 respectively. From 
Table 1 it is observed that the solute concentration values attain slightly higher concentration for sinusoidal 
velocity pattern as compare to the exponential decreasing velocity patter for each of the time period in 
respect of space. Similar nature of the concentration patterns is observed for the slit and clay formations 
where the concentration values attain slightly higher values in sinusoidal velocity pattern as compare to the 
exponential decreasing velocity pattern for each of the time period in respect of space.  
 

Table 1. The comparison of concentration value for the gravel geological formation in respect of distinct velocity 

pattern. 
 

Distance 

Concentration 

Time t = 1 year Time t = 2 year Time t = 3 year 

Exponential 

decreasing 
velocity pattern 

Sinusoidal 

velocity pattern 

Exponential 

decreasing 
velocity pattern 

Sinusoidal 

velocity pattern 

Exponential 

decreasing 
velocity pattern 

Sinusoidal 

velocity pattern 

0.0008 0.9826 0.9909 0.9872 0.9898 0.9887 0.9862 

0.02 0.5686 0.8239 0.7055 0.8736 0.76 0.8912 

0.04 0.2686 0.6505 0.4414 0.7489 0.5339 0.7881 

0.06 0.0892 0.4889 0.2399 0.6254 0.3424 0.6837 
0.08 0.0138 0.3477 0.1087 0.5077 0.1972 0.5811 

 

 
 

Table 2. The comparison of concentration value for the slit geological formation in respect of distinct velocity 

pattern. 
 

Distance 

Concentration 
Time t = 1 year Time t = 2 year Time t = 3 year 

Exponential 
decreasing 

velocity pattern 

Sinusoidal 
velocity pattern 

Exponential 
decreasing 

velocity pattern 

Sinusoidal 
velocity pattern 

Exponential 
decreasing 

velocity pattern 

Sinusoidal 
velocity pattern 

0.0008 0.9824 0.99 0.9869 0.9884 0.9882 0.9846 
0.02 0.5858 0.8216 0.704 0.8706 0.7582 0.888 
0.04 0.2681 0.6475 0.4399 0.7448 0.5318 0.7836 
0.06 0.0896 0.486 0.2392 0.6209 0.3409 0.6785 
0.08 0.0149 0.3454 0.109 0.5033 0.1966 0.5757 
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Table 3. The comparison of concentration value for the clay geological formation in respect of distinct velocity 

pattern. 
 

Distance 

Concentration 
Time t = 1 year Time t = 2 year Time t = 3 year 

Exponential 

decreasing 
velocity pattern 

Sinusoidal 
velocity pattern 

Exponential 

decreasing 
velocity pattern 

Sinusoidal 
velocity pattern 

Exponential 

decreasing 
velocity pattern 

Sinusoidal 
velocity pattern 

0.0008 0.9835 0.9896 0.9874 0.9871 0.9884 0.9826 
0.02 0.615 0.8337 0.7253 0.8779 0.7754 0.8931 
0.04 0.3078 0.672 0.4763 0.7616 0.5637 0.7966 
0.06 0.1198 0.52 0.2788 0.6464 0.3802 0.6993 
0.08 0.0309 0.3848 0.1422 0.536 0.2355 0.6036 

 
3.3 Relative Percent Error 

For testing the accuracy of solutions in this paper, we used the Relative Percent Error (RPE) which 

is significantly check the accuracy of the solution in respect of time period 1 year. The relative error 
was used to calculate the accuracy of the concentration segmentation in respect of the time period t= 1 year 
which is defined by, 

exp
100

ected value Truevalue
RPE

Truevalue

−
=                                                                                                      (31) 

 
The relative percent error is tabulated for each of the geological formations in respect of distinct velocity 
pattern. The relative error for the gravel medium attain higher value in case of exponential decreasing 
velocity pattern as compare to the sinusoidal velocity pattern for time interval t = 2 year and 3 year observed 
from Table 4. Similar nature of RPE obtained from Table 5 and Table 6 for the case of slit and clay medium 
for the time interval t = 2 year and 3 year respectively. The RPE value increases as increase the time period 
for respective velocity pattern in three distinct geological formations.  
 

Table 4. Relative percent error for the gravel medium for exponential decreasing and sinusoidal velocity pattern . 
 

Distance 

Concentration values for exponential decreasing velocity 

pattern 
Concentration values for sinusoidal velocity pattern  

Time t=1 year Time t=2 year Time t=3 year Time t=1 year Time t=2 year Time t=3 year 
0.0008 0.9826 0.9872 0.9887 0.9909 0.9898 0.9862 

0.02 0.5686 0.7055 0.76 0.8239 0.8736 0.8912 

0.04 0.2686 0.4414 0.5339 0.6505 0.7489 0.7881 

0.06 0.0892 0.2399 0.3424 0.4889 0.6254 0.6837 

0.08 0.0138 0.1087 0.1972 0.3477 0.5077 0.5811 

Relative Percent Error 29.11 46.77 Relative Percent Error 13.49 19.31 

 
 
 

Table 5. Relative percent error for the slit medium for exponential decreasing and sinusoidal velocity pattern . 
 

Distance 

Concentration values for exponential decreasing velocity 
pattern 

Concentration values for sinusoidal velocity pattern 

Time t=1 year Time t=2 year Time t=3 year Time t=1 year Time t=2 year Time t=3 year 

0.0008 0.9824 0.9869 0.9882 0.99 0.9884 0.9846 

0.02 0.5858 0.704 0.7582 0.8216 0.8706 0.888 

0.04 0.2681 0.4399 0.5318 0.6475 0.7448 0.7836 

0.06 0.0896 0.2392 0.3409 0.486 0.6209 0.6785 

0.08 0.0149 0.109 0.1966 0.3454 0.5033 0.5757 

Relative Percent Error 27.73 45.07 Relative Percent Error 13.39 19.16 
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Table 6. Relative percent error for the clay medium for exponential decreasing and sinusoidal velocity pattern . 
 

Distance 

Concentration values for exponential decreasing 

velocity pattern 
Concentration values for sinusoidal velocity pattern  

Time t=1 year Time t=2 year Time t=3 year Time t=1 year Time t=2 year Time t=3 year 

0.0008 0.9835 0.9874 0.9884 0.9896 0.9871 0.9826 

0.02 0.615 0.7253 0.7754 0.8337 0.8779 0.8931 

0.04 0.3078 0.4763 0.5637 0.672 0.7616 0.7966 

0.06 0.1198 0.2788 0.3802 0.52 0.6464 0.6993 

0.08 0.0309 0.1422 0.2355 0.3848 0.536 0.6036 

Relative Percent Error 26.88 43.08 Relative Percent Error 12.17 17.32 

 

 

3.4 Validation of Model 
The validation of the developed model equation is shown with the existing research work carried out by 
Gharehbaghi (2016). Gharehbaghi (2016) explored the solution of one-dimensional solute transport model 
equation in semi-infinite porous media by using differential quadrature method. The Table 7 tabulated the 
different inputs values (authors input and Gharehbaghi, 2016) for the validation purpose. The concentration 
distribution pattern for different inputs values is predicted in Figure 11 for the exponential decreasing 
velocity pattern for clay geological formation. The concentration values for the input value (i) attain the 
minimum level of concentration as compared to the input (ii). As the solution developed in non-dimensional 
form so distance covered different for the different inputs values. Beyond some distance both the 
concentration values attain its minimum harmless concentration at the end of the geological formation.  
 
 

 
 

Figure 11. concentration segmentation pattern of clay medium for distinct set of input data. 

 
 
 

Table 7. The different input values for validation purpose. 
 

Author’s Name Input values 

Source concentration (c0) Initial dispersion coefficient (D0)  Initial seepage velocity (u0)  

(i)Author’s Input 1.0 0.80 0.10 

(ii) Gharehbaghi (2016) 1.0 0.71 0.60 
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4. Summary and Conclusions 
The exact solution of one-dimensional solute transport model equation with the effect of the various decay 
and biodegradation decay parameters in homogeneous semi-infinite aquifer were found. The impact of 
distinct groundwater reservoirs properties such as porosities, densities and various decay order terms were 
taken into interpretation over the obtained solution.  
(i) The impact of linear isotherm was analyzed for solute transport through solid liquid interphase. Also, 

solute dispersion coefficient was straight related to the initial outflow velocity incorporate so that 
contaminant level into groundwater reservoirs can be measure in respect of groundwater flow. 

(ii)  The nature of distinct geological formations was studied carefully. The solute contaminant level was 
observed minimum in slit and gravel medium as compared to the clay medium for both the exponential 
and sinusoidal velocity patterns. 

(iii) The solute contaminant level was observed minimum level for each of the geological formation in 
exponential decreasing velocity as compared to the sinusoidal velocity pattern.  

(iv) The surface concentration study for the gravel and clay medium was presented regarding solute 
transport against surface of the groundwater reservoir, and the variation of pollutant was shown in the 
groundwater reservoir surface. 

(v) The accuracy rate in sinusoidal velocity pattern observed minimum as compare to the exponential 
decreasing velocity pattern. Also, the model validated with the existing research work and found that 
the concentration segmentation attains the same pattern, however the authors inputs covered the 
minimum harmless concentration at each of the point as compare to other one.  

(vi) The proposed exact solution of the governing equation may be useful to predict the solute contaminant 
level in respect of time and distance in presence of decay parameter into the groundwater reservoir. It 
will become recyclable and useful for remediation of contaminant in urban and industrialized areas. 

(vii) The governing equation with the surface source contamination may further be investigated for the 
solute segmentation nature in groundwater reservoir. 

 
List of Symbols 

D :    Longitudinal dispersion coefficient; 2 1L T −   . 

u :     Unsteady uniform pore seepage velocity; 
1LT −   . 

c :     The volume averaged dispersing solute concentration in the liquid phase; 
3ML−   . 

s :    The volume averaged dispersing solute concentration in the solid phase; 
3ML−   . 

ic :    Initial concentration; 3ML−   . 

0c :    Source concentration; 3ML−   . 

 :     The decay rate constant; − 
 

1T . 

dK :   Distribution coefficient. 

 :     Bulk density; 3ML−    

 :      Porosity of the different geological formation  

 :      Dispersivity. 

0D :     Initial dispersion coefficient; 2 1L T −  
. 

0u :     Initial seepage velocity; 1LT −   . 

n :      Porosity of the different geological formation. 
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x :     The longitudinal direction of flow;  L . 

m :    The flow resistance coefficient; 1T −  
. 

t  :   Time variable;  T .  

S :  Laplace transforms parameter. 

K :   Laplace transform of K . 

C :  Non dimensional solute concentration in geological formations.  

X :  Non dimensional direction of flow. 

q :  First order decay rate coefficients 1T −  
. 

 :  Biodegradation decay rate coefficients; 1T −  
. 

( )f mt :  The generalised case of the time dependent function. 

R :  Retardation factor. 
 

 

Appendix 

After using the transformation (20) in Equation (26) together with the initial and boundary conditions (17) 
to (19), we obtain as follows: 

2

2

K K
R

T X

 
=

 
                                                                                                                                                  (A1) 

( )
0

,0 exp
2

ic X
K X

c 

− 
=  

 
; 0T =  0X                                                                                                 (A2) 

( ) ( )* *1 1
,0 1 sin exp

4
K X T T

R
  

 

  
= − +  

  
;  0, 0X T=                                                                        (A3) 

2

K K

X 


= −


;          X →   0T                                                                                                                (A4) 

 
Taking Laplace integral transform technique over Equation (A1) together with the initial condition we 
obtain the complete solution as 

( )
0

2

1
, exp

1 2

4

SRX SRX ic X
K X S Ae Be

c
S

R





− − 
= + +  

   − 
 

                                                                                  (A5) 

where, ( ) ( )
0

, , STK X S K X T e dT



−=  ; A and B are the arbitrary constants. 

 
From Equation (A3) and (A4), we get, 
A=0                                                                                                                                                           (A6) 
 

( ) ( )
*

2

0
2

1 1 1

1

4

ic
B

S Q cS Q S
R





= − −
−  − − 

 

                                                                                               (A7) 

where, 
*1 1

4
Q

R
 

 

 
= + 

 
. 
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Now using the values of A  and B  in Equation (A5), we obtain, 

( )
( ) ( )

*

2

0 0
2 2

1 1 1 1
, exp

1 1 2

4 4

SRX SRX SRXi ic c X
K X S e e e

S Q c cS Q S S
R R




 

− − − − 
= − − +  −      − − −   

   

                     (A8) 

 
Now taking the inverse Laplace transform of each terms of Equation (A8) we get the desired result  

1 2 3 2

0 0

1
( , ) ( , ) ( , ) ( , ) exp

4 2

i ic c X
K X T A X T A X T A X T T

c c R


 

  
= − − + −  

  
                                            (A9) 

 
Using Equation (A9) in Equation (20) we get the desired result which we find from Equations (22) and 
(24). 
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