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Abstract 

In this paper, an investigation of wire and electric discharge machining has been provided. Wider possibilities for the creation of 

composites and sophisticated materials were made possible by advances in machining science. As research in this area continues, 

more materials with complicated meteorological structures and strong mechanical resistance capabilities are emerging. Because of 

the exceptional strength, toughness, and hardness of these materials, advanced machining techniques are replacing traditional 

machining techniques in this industry. One unique type of advanced machining technique used in this research is electrical discharge 

machining. It has also been discussed how these machining methods might develop in the future. This paper serves as both a 

research tool and a step in that direction. The best settings for the processes outlined above will aid in boosting diverse sectors' 

output. The research on non-conventional machining processes with diverse optimisation strategies is presented in this review. The 

optimisation techniques taken into account for the current work were Taguchi's, artificial neural networks, particle swarm 

optimisation, response surface approach, grey connection analysis, and genetic algorithm. 

 

Keywords- Metal matrix composites, EDM, Wire electric discharge machining, Artificial neural network, Material removal rate, 

Surface roughness. 

 

 

 

1. Introduction 
Machining of difficult or advanced materials is required because material development is progressing so 

quickly. The requirements of modern manufacturing sectors include high precision and accuracy, minimal 

surface roughness, shorter machining times, and reduced costs when creating products with complicated 

geometries, micro and macro sizes, and hard materials. These requirements can be met by applying non-

traditional machining techniques, particularly EDM (Tonday & Tigga, 2019). Non-conventional machining 

procedures are the name given to these novel machining techniques. A common non-conventional material 

removal technique used to make dies, punches, and moulds is electrical discharge machining(EDM) (Garg 

et al., 2010). In comparison to traditional machining, these new techniques have a number of benefits, 

including improved surface polish, increased tool life, superior precision and accuracy throughout 

machining, less waste, and increased productivity (Gautam et al., 2022). EDM is extensively utilised for 

surgical components. The tool manufacturing, automotive, and aerospace sectors all use this technology. 

Regardless of the work piece's hardness, the appropriate surface finish can be measured and achieved 
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throughout the wire EDM machining process on any intricately shaped work piece (Subrahmanyam & 

Nancharaiah, 2020). Electrically conductive objects of any shape, hardness, or toughness can be machined 

successfully using this technology (Kansal et al., 2007). 

 

1.1 History of EDM 
Since its invention in the 1950s, the manufacturing sector has employed the EDM technique. The EDM 

machine and computer systems were connected in the 1980s. Since then, hard materials with intricate shape 

profiles can be machined using EDM technology. The EDM technique is suitable for machining a variety 

of materials. It also includes difficult machining of: (1) Al/ZrO2(p)-MMC; (2) Ti6Al4V super alloy; (3) 

monocrystalline silicon ingot; (4) AISI D2 tool steel; (5) Inconel 718; (6) Si3N4-TiN composite; and (7) 

thermal-barrier-coated nickel super alloys (Gautam et al., 2022; Prasanna et al., 2017). To overcome the 

limits of the fundamental EDM process, numerous modifications have been introduced, which include the 

use of: (1) wire EDM; (2) micro-EDM; (3) cryogenic cooling; (4) die-sinking electric discharge machining; 

and (5) piezoelectric self-adaptive micro-electric discharge machining. These EDM process variations each 

have their own unique advantages and restrictions, making them suited for the machining of advanced 

materials. 

 

1.2 EDM Working Principle 
EDM is a non-traditional technique of machining various metals that has been invented to be more cost-

effective when used on modern alloys and composite materials (Prasanna et al., 2017). This sort of 

machining process is one of the non-contact ones. The heat energy of the spark is utilised in this thermo-

electric process to eliminate material completely from the work piece. The fact is that very little force is 

generated by the tool while cutting materials. Multiple electrical sparks produced between the tool and the 

work materials with a constant electric field are used to remove the metal in a dielectric environment 

(Choudhary et al., 2017). The utilised dielectric fluid serves as a cooler and also removes the debris that 

has built up on the surface of the machine. Its operating mechanism entails regulated high frequency pulses 

that generate numerous sparks per second to erode material from the work piece in a dielectric fluid media. 

The DC pulse generator generates a quick and repeating spark between two electrodes; the narrowest 

spacing between the two electrodes determines where the spark will occur. The constant bombardment of 

ions and electrons produces a plasma channel (Tripathy & Tripathy, 2017). The temperature of the very 

small area under the spark is extremely high, ranging from 8000°C to 12000°C, which causes material from 

the localised area of the tool and work piece to partially melt and vaporise, Craters are left behind once the 

material is removed. The work item is then created with a hollow that roughly resembles the tool. The 

polarity and operation settings should be carefully chosen to reduce tool wear. Additionally, the spark gap 

can be adjusted to meet the machining conditions, like the MRR (Prasanna et al., 2017). For the EDM and 

its many variations, there are a number of process parameters that must be set. These include: gap voltage, 

peak current (Ip), pulse time on (Ton), dielectric pressure, electrode rotational speed, and duty factor. MRR, 

deviations in dimensions, wear of electrode, surface quality, and overcut are response characteristics that 

are impacted by these input variables. These response characteristics, which were constrained by the 

fundamental EDM process, were improved by the different adjustments made to the EDM process. 

 

1.3 Main Parameters of EDM 
Main parameters of EDM machine are classified into parts 

(i) Process parameters 

(ii) Performance parameters 
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1.3.1 Process Parameters 
The machining process performance metrics are managed by the EDM process parameters. The main 

process parameters can be classified into four categories (Figure 1), which are as follows: 

(i) Electrical parameter 

(ii) Non-electrical parameter 

(iii) Electrode parameter 

(iv) Powder parameter 

 

 
 

Figure 1. EDM process parameter. 

 

 

1.3.2 Performance Parameters 
Performance parameters measure the various process performances of the EDM result (as per Figure 2), 

which are as follows: 

(i) Wear ratio (WR):- The ratio of tool wear rate to material removal rate is known as WR. It is employed 

as a performance metric to quantify the material combinations of tool work pieces since distinct 

material combinations result in varying TWR and MRR values. The tool work piece material 

combination that provides the best TWR and MRR circumstances is indicated by a material 

combination pair with the lowest WR. 

(ii) Tool wear rate (TWR):- TWR, a performance metric for the erosion rate of the tool electrode, is often 

considered when assessing the geometrical precision of the machined feature. It is stated as the 
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volumetric amount of tool electrode material removed per unit of time. TWR, the electrode's weight 

differential before and after the performance session, is calculated using the material volume removed 

from the tool per unit of machining time and is expressed as a percentage of MRR (Gangil & Pradhan, 

2017). 

(iii) Material removal rate (MRR):- The rate of machining is typically determined using MRR, a 

performance metric for the erosion rate of the work piece. The expression for it is the volumetric 

amount of work piece material eliminated per unit of time. To compute MRR, the weight difference 

of the work piece before and after the experiment is employed. 

(iv) Surface roughness (SR):- Surface roughness (SR) is a surface parameter categorization that describes 

an amplitude characteristic. It is one of the numerous surface parameters that may be used to measure 

SR. The SR of the work piece can be expressed in a number of ways, including arithmetic average 

(Ra), average peak to valley height (R), and peak roughness (R). 

(v) Heat affected zone (HAZ):- The HAZ is the region of base material, which could be a metal that hasn't 

melted but has had heat-intensive cutting operations changed to its microstructure and characteristics 

(Gangil et al., 2017a). 

(vi) Surface quality (SQ):- A wide performance metric called "surface quality" is used to characterise the 

state of the machined surface. Recast layer thickness (RLT), microcrack density, SR, and the size of 

the heat-affected zone (HAZ) are some of its constituent parts. A surface's lay, surface roughness, and 

waviness come together to create its surface finish, also known as surface topography or surface 

texture. 

 

 
 

Figure 2. EDM performance parameter. 

 

 

1.4 Wire Electric Discharge Machining 
One of the more sophisticated machining techniques, Wire Electric Discharge Machining (WEDM), allows 

for the machining of extremely complex forms (Sureban et al., 2019). Wire of predetermined diameters 

serves as the electrode in the WED machine. The non-stationary electric discharge that forms between the 

travelling wire and the work piece is what causes the material to be removed from the work piece (Ukey et 
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al., 2023). The WEDM method involves applying an appropriate voltage across a tool and work piece that 

are separated by a dielectric fluid. The tool and work piece erode as a result of the ionisation of the dielectric 

fluid, which accelerates the release of electrons due to the presence of an electric field (Jaiswal et al., 2018). 

This method is typically used to create punch dies, cutting tools, and other hard-to-machine materials. 

Although the method has long been recognised as the industry standard for machining in the tools, dies, 

and moulds sector (Choudhary et al., 2017). The schematic diagram of Wire EDM is shown in Figure 3. 

 

 
 

Figure 3. Schematic diagram of wire EDM. 

 

 

The Wire Electric Discharge Machining (WEDM) technique can be used to machine a variety of electrode 

wire types, which are: (1) copper wire, (2) brass wire, and (3) zinc-coated brass wires. The WEDM process' 

output response varies depending on the kind of wire utilised in the procedure. Because of this, the ideal 

input parameters also vary based on the type of wire being used, which are: (1) wire feed (WF), (2) pulse 

on time, (3) servo voltage (SV), and (4) pulse off time (Sureban et al., 2019). For this process, the input 

parameters that are examined are: (1) the wire feed, (2) pulse Off Time, (3) servo voltage, and (4) pulse On 

Time. The output responses that have received the most attention include: (1) the material removal rate, (2) 

surface roughness, (3) current, (4) Duty factor, (5) flushing pressure, dielectric, and (6) tool type. 

 

1.5 Powder Mixed Electro- Discharge Machining 
A kind of electrical discharge machining (EDM) called powder mixed electrical discharge machining 

(PMEDM) makes use of finely abrasive, electrically conductive powder combined with a dielectric fluid. 

When compared to traditional EDM, this enhances EDM performance and yields a better surface polish 

(Joshi & Joshi, 2019). Powder Mixed Electro-Discharge Machining (PMEDM) is a relatively recent method 

that has provided a new avenue for enhancing EDM's process capabilities and producing a surface finish 

that is nearly mirror-like, with fewer surface cracks and homogenised white layer (Tripathy & Tripathy, 
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2017). Inter-electrode space is increased when a sufficient fine powder is added to the dielectric fluid, which 

lowers the fluid's insulating strength and makes it easier to remove debris (Goyal, 2017). With the addition 

of conductive powder particles, machining rates can be increased and surface quality can be enhanced. 

 

2. Review of EDM Machining Processes 
Chen et al. ( 2010), Chopde et al. (2014), and Gajjar et al. (2015) observed that the Pulse On Time (Ton) 

or pulse duration is the most important constraint to improve machining qualities. Goyal (2017) also says 

that Current and Pulse Off Time (Toff) are important parts of improving Material Removal Rate (MRR). 

Somashekar et al. (2010) observe that feed rate, gap voltage and capacitance are important parameters for 

Material removal rate (MRR). Shrivastava & Dubey (2013) and Aggarwal et al. (2015) observed that Pulse 

On Time (Ton) and Ip are the main input parameters which may affect MRR. Kumar & Kumar (2014) find 

that Electrode, Current Ton and Gap voltage are the main input parameters which can give high Material 

removal rate (MRR) and Surface Roughness (SR). Guo et al. (2016) find that TWR rises as the flushing 

pressure and current rise. The researchers must select the many input parameters and their levels in a way 

that provides us with the optimal parameter to achieve several goals, including: (1) enhancing the Material 

Removal Rate (MRR), (2) extending the tool's life, (3) reducing scrap, etc. To accomplish these many 

objectives, various optimization techniques are employed, including: (1) Taguchi methodology; (2) grey 

relation analysis; (3) response surface methodology; (4) non-dominating sorting genetic algorithm; and (5) 

elitist teaching learning-based optimization. In Table 1, grinding processes that have been done recently 

using Electric discharge machining (EDM) and Wire Electric Discharge Machining (WEDM) are shown. 

Eswaramoorthy & Shanmugham (2015) analyse that the DoE method is the best to optimise wire-EDM 

parameters. Goyal et al. (2018), Goyal et al. (2021), Maity & Mishra (2018), and Raj & Kumar (2015) have 

shown, these optimisation techniques are now used in multi-objective approaches and hybrid methods. 

Researchers like Bhatt & Goyal (2019), Goyal & Ur Rahman (2021), Maity & Mishra (2018), and Raj & 

Kumar (2015) used RSM and Taguchi's techniques to optimise input and response parameters. Pandey et 

al. (2017) tried to use hybrid optimisation techniques to optimise the parameters. Electrical discharge 

cladding, wire EDM machining, and other new research on these topics have also been done (Pramanik et 

al., 2021). 
 

3. Methodologies  

3.1 Optimization Techniques of EDM 
These optimization techniques help increase productivity, cut down on waste, make tools last longer, and 

give a better finish on the surface by giving optimized parameters for machining. In order to further improve 

performance by minimising the drawbacks of one method and using the benefits of another, these 

optimisation techniques are also used in hybrid and multi-objective methods. There are numerous 

optimization techniques, some of which are listed below with the help of Figure 4, which are as follows: 

(i) Tagauchi method 

(ii) Genetic algorithm method 

(iii) Simulated annealing method 

(iv) Artificial bee colony method 

(v) Grey relationship analysis 

(vi) Response surface method 

(vii) PSO method 
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Figure 4. EDM optimization techniques. 

 

3.1.1 Tagauchi Method 
One of the greatest experimental techniques for determining the fewest tests that must be conducted while 

staying within the parameters and level range that is allowed is the Taguchi method. 

 

3.1.2 Genetic Algorithm Method 
The global elite is parallelly and randomly searched through crossover, mutation, and reproduction 

processes, according to the probabilistic basis upon which the GA was built. The survival of the fittest 

approach is the only one used by these algorithms to search for better solutions while maintaining and 

managing a population of responses. With a non-dominant sorting genetic set of rules II, lengthy lower 

backs maximised the outcome of the procedure by using a multi-goal optimisation technique. This provides 

an EDM parameter optimisation version that mimics a decision using genetic algorithms. 

 

3.1.3 Simulated Annealing Method 
When evaluating the objective function that yields the global optimum solution, the SA optimisation 

technique uses random numbers as its basis. The method known as SA mimics how metals naturally cool 

down over time. SA offers an excellent solution for a wide range of combinatorial problems and is more 

practical to use than other global optimisation techniques like GA and TS. Both the starting temperature 

and the decrement (cooling down) factor are parameters of standard SA. Outperforming GA approaches, 

SA techniques were utilised by the researchers to optimise process parameters for mechanical-type 

advanced machining. One-point search is used in the simulated annealing process. Annealing molten metal 

to code it is similar to the simulated annealing procedure (Gangil et al., 2017b). 

 

3.1.4 Artificial Bee Colony Method 
Inspired by the astute hunting techniques of honey bees, they devised the ABC method, which maximises 

numerical problems. This exploration technique, like the concepts of ACO and PSO, can lead to high-

quality solutions. When the ACO was first used, it was for combinatory issues. At the moment, it is used 

to address problems pertaining to continuous optimisation. 
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3.1.5 Grey Relationship Analysis 
Deng (1989) introduced the grey system theory that can be utilised to resolve the intricate linkages between 

the many performance parameters. It created new techniques for resolving the intricate relationships 

between the many performance characteristics (Gangil et al., 2017c). It is an effective method for estimating 

the behaviour of a discrete data problem and an uncertain system with little information needed. There are 

three different kinds of systems: black (no information), white (all information), and grey (imperfect 

information), which means that only a small amount of information is needed to forecast how an uncertain 

system and discrete data problem will behave. We must apply data preprocessing to the initial experimental 

data in order to prevent this influence. Data processing has a range of zero to one (0–1). The process of 

normalisation involves transforming the data into a similar sequence. Normalisation requires three things: 

Nominal is the best, higher is better, and lower is better (Gangil et al., 2017a). 

 

3.1.6 Response Surface Method 
The Response Surface Methodology (RSM) is a collection of computational and numerical techniques that 

are suitable for exploring and illustrating problems when the result is subject to partiality depending on 

many input parameters (Bagal et al., 2019), which is explained with the help of Figure 5. The ultimate 

objective of this methodology, which is based on experimental design, is to assess industrial facilities' 

optimal performance with the least amount of experimental work. In this case, the inputs are referred to as 

variables or factors, and the outputs are the responses that the factors cause to generate the system. 

Subsequently, the RSM was demonstrated in the creation of new procedures and goods. It has been 

effectively implemented in various scientific domains, including biology, medicine, vehicles, aviation, etc. 

Using a series of planned experiments to find the best response is the fundamental concept of RSM. RSM 

looks into the relationship that exists between one or more response variables and a number of illustrative 

factors (Gangil & Pradhan, 2017). 

 

 
 

Figure 5. Flowchart of RSM process & its procedure. 
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3.1.7 PSO Method 
Genetic algorithms necessitate intricate encoding and decoding procedures, which are not necessary for the 

PSO approach. The actual value is a particle that adjusts its internal velocity to find the optimal answer. 

Potential solutions in PSO are referred to as particles and mimicking insect or bird swarms. These particles 

follow the existing optimum particles and fly through the problem space. Managing the restrictions of the 

non-linear equation and assessing the impractical particles are crucial. This is mostly because the particles 

produced throughout the process might not adhere to the system's limitations, producing particles that are 

not possible. The particles that better satisfy the imposed objective function are those that represent the 

optimal PSO solution (Quarto et al., 2022). The PSO method is explained with the help of Figure 6.  

 

 
 

Figure 6. PSO algorithm flowchart. 

 

 

Table 1. Work done by EDM machining processes in the last ten years. 
 

Author & 

Year 

Method Objectives Material to 

Work 

Input parameters Optimization 

techniques 

Finding 

Chiang & 
Chang (2006) 

WEDM 1) Surface 
Removal Rate 

2) SR 

1) Al2O3 1) V,  
2) Ton,  

3) Toff,  

4) Arc-on-time,  
5) Arc-off-time,  

6) Cutting radius 

of work piece,  
7) Wire feed,  

8) Water flow 

1) GRA A mathematical model 
is unable to contain 
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Table 1 continued… 
 

Yilmaz et al. 

(2006) 

EDM 1) EW,  

2) SR,  

3) Erosion rate 

1) AISI 

4340 

1) Pulse interval,  

2) Pulse duration,  

3) Ip,  
4) Flushing rate  

5) Gap control,  

1) Fuzzy logic Triangular 

membership functions, 

fuzzy-expert rules, and 
the centroid area 

approach are used in 

fuzzy models' 
fuzzification and 

defuzzification 

processes, 
respectively. 

Mandal et al. 

(2007)  

EDM 1) MRR,  

2) TWR 

1) C40 Steel 1) Pulse off time  

2) Ip,  
3) Ton,  

1) ANN with 

BPNN 

The on-dominating 

sorting GA-II 
technique is a multi-

objective optimisation 

technique. 

Tzeng & Chen 
(2007) 

EDM 1) precision 
Accuracy 

1) SKD11 1) Ip,  
2) Powder size  

3) Ton,  

4) Duty cycle,  
5) Powder 

concentration,  

1) Fuzzy logic The effectiveness of 
each parameter is 

determined by 

examining the 
correlations between 

the machining 

precision and accuracy 
using a fuzzy logic 

system. 

Rangajanardhaa 
(2009)  

EDM 1) SR 1) Steel 
alloy M-

250. 

2) Ti6Al4V,  
3) Al alloy 

HE15,  

4) Steel 
alloy 

15CD 

1) Ip,  
2) V 

1) ANN with 
GA 

ANNs with multiple 
perceptions were 

created with the Neuro 

Solutions software. 
Utilising the GA 

approach, the 

network's weighting 
and factors are 

optimised. 

Yang et al. 
(2009) 

EDM 1) MRR,  
2) SR 

1) Steel 1) Ton,  
2) Pulse-off-time,  

3) Ip, 

4) V 

1) NN  
2) SA,  

A counter-propagation 
neural network is used 

to generate the model 

based on experimental 
data. 

Kumar et al. 

(2010)  

Abrasive

-mixed 

EDM 

1) MRR,  

2) SR 

1) EN-24 

tool steel 

1) Concentration 

of abrasive 

powder in 
dielectric fluid 

1) GRA When compared to 

other variables, the 

impact of abrasive 
particles was highly 

significant. 

Chen et al. 
(2010) 

WEDM 1) SR,  
2) Cutting 

velocity,  

3) MRR 

1) Pure 
tungsten 

1) Servo V, 
2) Arc of time,   

3) Ton,  

4) Water pressure 
5) Pulse-off-time,  

6) Wire feed rate,  

7) Wire tension,  

1) ANN 
integrated 

with SA 

It was found that the 
most important 

component was the 

pulse-on time. based 
on the conformation 

experiments and the 

outcome. 

Somashekhar et 

al. (2010) 

Micro-

EDM 

1) MRR 1) Aluminiu

m 

1) Feed rate, 

2) Gap V,  

3) Capacitance,  

1) GA  

2) ANN,  

 

Compared to other 

factors, capacitance 

was found to cause 
more variance in MRR. 

Joshi & Pande 

(2011) 

Die-

sinking 

EDM 

1) Crater  

2) size,  

3) MRR,  
4) TWR 

1) AISI P20 

Mold 

steel 

1) Break down V,  

2) Ip,  

3) Discharge 
Duration 

4) Duty cycle,  

5) Discharge V,  

1) FEM, 

2) GA  

3) ANN,  

There were no 

mathematical models 

that discussed input-
output variables. 
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Table 1 continued… 
 

Reza et al. 

(2012)  

EDM 1) MRR,  

2) EWR,  

3) SR 

1) SS 304 1) V,  

2) Polarity, 

3) Ip, 
4) Dielectric 

pressure  

5) Ton  
6) Depth 

diameter  

1) GRA With the EDM control 

parameters optimized, 

there is a 0.1639 
improvement in the 

grey relational grade. 

Atefi et al. 
(2012) 

EDM 1) SR 1) Hot work 
steel 

DIN1.2344 

1) Ton  
2) Pulse-off-

time, 

3) Pulse Ip,  
4) Pulse V,  

1) ANN In order to lower error 
in the optimisation of 

intricate and non-linear 

problems, hybrid 
models are used. 

Kohli et al. 

(2012) 

EDM 1) MRR 1) AISI 1040 1) Ton  

2) Toff 

3) Ip,  

1) Fuzzy logic The suggested fuzzy 

model was found to be 

in good accord with the 
outcomes of the 

experiment. 

Shrivastava & 
Dubey (2013)  

EDDG 1) MRR,  
2) TWR 

1) Cu-iron-Gr 
MMC 

1) Ton  
2) Ip,  

1) GRA  
2) ANN,  

3) GA,  

enhanced both the 
wheel wear rate and 

MRR by roughly 31% 

and 76%, respectively. 

Baraskar et al. 
(2013)  

Die 
sinking 

EDM 

1) MRR,  
2) SR 

1) EN-8 
carbon 

steel 

1) Pulse-on-
duration  

2) Ip,  
3) Ton,  

4) Toff,   

1) NSGA-II  
2) RSM,  

 

The optimisation 
toolbox was directly 

used to produce results. 

Zhang et al. 

(2013)  

EDM 1) MRR 1) Mold steel 

8407 

1) Ip 

2) Polarity,  
3) Pulse 

duration, 

4) V,  

1) FEM The characteristics of 

EDM plasma are being 
investigated using a 

novel approach. 

Dhanabalan et 

al. (2013) 

EDM 1) MRR,  

2) EWR 

1) Inconal 

718 

1) Ton,  

2) Ip 

3) Toff, 

1) GRA The modified approach 

utilised here is 

effective in both 
detraining the ideal 

input parameter 

setting. 

Agrawal et al. 
(2013) 

PMEDM 1) TWR 1) Al/Sic 
MMC 

1) Pulse-off-
time,  

2) Ton,  

3) Ip,  
4) Powder 

concentration 

1) ANN When graphite powder 
is mixed with 

dielectric, the TWR 

during MMC 
machining is greatly 

decreased. 

Sivaprakasam 
et al. (2014) 

Micro-
WEDM 

1) MRR,  
2) SR,  

1) Ti-6Al-4v 1) Feed rate  
2) V,  

3) Capacitance, 

1) GA  
2) RSM,  

 

The proposed model 
can be used with a GA 

and a multi-objective 

optimisation technique 
to find the best 

machining conditions. 

Das et al. 
(2014) 

EDM 1) MRR,  
2) SR 

1) EN 31 1) Ip,  
2) Ton, 

3) V 

4) Toff,  

1) ABC 
Analysis 

The analyses are 
validated by 

confirmation tests, 

which show that the 
results are in good 

agreement with the 

experimental data. 

Kumar & 
Kumar (2014) 

Cryogeni
c cooled 

EDM 

1) Electrode 
2) Wear 

3) MRR 

4) SR 

1) Al-10% 
SiCp 

MMC 

1) Electrode 
2) Current 

3) Ton 

4) Gap voltage 

1) Gray 
relation 

analysis 

The optimisation of 
several parameters has 

been undertaken in 

order to attain a 
favourable a high MRR 

and SR. 
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Chopde et al. 

(2014)  

WEDM 1) SR 1) AISI D2 tool 

steel 

1) Ton  

2) Toff  

3) Ip 
4) Gap Voltage 

1) Taguchi 

technique 

Ton identified the 

crucial element for 

raising the SR. 

Tiwary et al. 

(2015) 

µ EDM 1) MRR 

2) TWR 
3) Taper of µ 

EDM 

1) Ti6Al4V 

alloy 

1) Ton 

2) Flushing 
3) pressure 

4) Ip  

5) Spark gap 
voltage 

1) Using a 

response 
surface 

The findings of the 

experiment and those 
predicted indicate a 

strong correlation. 

Dewangan et al. 

(2015) 

EDM 1) WLT,  

2) SCD,  

3) SR 

1) AISI P20 1) Tool-work 

time,  

2) Tool-lift time 

3) Pulse-on time,  

4) Ip,  

1) Fuzzy logic  

2) GRA,  

 

Hybrid optimization 

approach with a grey-

fuzzy basis for 

optimum EDM 

parameter selections 

that enhance surface 
integrity. 

Raj & Kumar 

(2015) 

EDM 1) MRR 1) EN45 Steel 1) Toff 

2) Ton  
3) Ip 

4) Spark gap 

voltage  

1) Taguchi 

technique 

The parameters Toff 

and Current are crucial 
for enhancing the 

MRR. 

Aggarwal et al. 
(2015) 

EDM 1) Cutting rate 
2) SR 

1) Inconel 718 1) Gap voltage 
2) Wire feed rate 

3) Ip 
4) Ton 

5) Wire tension  

6) Toff 

1) RSM 
technique 

Ton and Ip discovered 
the most crucial 

variable. 

Singh et al. 
(2015) 

Wire 
EDM 

1) Dimensiona
l deviation 

1) EN8 Steel 1) Servo voltage  
2) Wire feed 

3) Toff 

1) Taguchi 
technique 

Variation in dimension 
is most significantly 

impacted by servo 

voltage. 

Gajjar & Desai 

(2015) 

WEDM 1) MRR 

2) Kerf width 

3) SR 

1) EN-31 Steel 1) Ton  

2) Servo voltage 

3) Toff 
 

1) GRA 

technique 

The Ton has identified 

the key element. 

Eswaramoorthy 

& 

Shanmugham 
(2015) 

WEDM 1) MRR 

2) SR 

3) Electrode 
wear 

1) Titanium 1) Ton 

2) Gap voltage 

3) Toff 
4) Wire feed rate 

5) Wire tension  

6) Dielectric 
pressure 

1) Taguchi’s 

technique 

The method used by 

Taguchi has effectively 

optimised the 
numerous replies. 

Dongre et al. 

(2015) 

WEDM 1) Kerf width 

2) Cutting 
speed 

3) SR 

1) Mono-

Crystalline 
Silicon 

Ingot 

1) Work piece 

width  
2) Ip 

3) Wire diameter 

4) Duty cycle 

1) Response 

surface 
technique 

It has achieved the 

enhanced SR. 

Selvarajan et al. 

(2016) 

EDM 1) MRR 

2) TWR 

3) Circularity 
4) Cylindricity 

1) Si3N4-TiN 

Composite 

1) Dielectric 

Pressure 

2) Ton 
3) Current 

4) Toff 

1) GRA 

technique 

The experimental 

results show major 

improvements in the 
process. 

Rengasamy et 

al. (2016) 

EDM 1) MRR 

2) TWR 

1) Al 4032 

Alloy 

1) Ton 

2) Current 
3) Composites 

4) Toff 

1) Taguchi’s 

methodolog
y 

The Al 4032 composite 

alloy's process 
parameter variation for 

the results. 

Guo et al. 
(2016) 

EDM 
Drilling 

1) Machining 
time 

2) TWR 

3) SR 

1) Coated Ni 
alloy 

1) Duty factor 
2) Flushing 

pressure  

3) Discharge 
current 

4) Pulse duration 

1) Gray 
relation 

analysis 

technique 

TWR rises as the 
flushing pressure and 

current rise. 
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Rahang & 

Patowari (2016) 

EDM 1) TWR 

2) Material 

transfer rate 
3) SR 

4) Edge 

deviation 

1) Aluminium 1) Ton 

2) Ip  

3) Compact load  
 

1) Taguchi’s 

method 

The changed surface 

has got the improved 

hardness. 

Garg et al. 

(2016) 

Wire 

EDM 

1) Spark gap 

2) MRR 

1) Al/ZrO2(p)-

MMC 

1) Machining 

voltage 

2) Wire tension 
3) Wire feed rate  

4) Pulse width 

5) Work piece 
height  

1) Response 

surface 

technique 

The model that was 

created displays good 

arrangement with the 
findings. 

Pragadish & 

Pradeep Kumar 

(2016) 

Dry-

EDM 

1) MRR 

2) SR 

1) AISI D2 

Steel 

1) Gap voltage 

2) Current 

3) Pressure 
4) Ton 

1) GRA 

method 

Along with pressure, 

the current has 

identified the most 
crucial variables. 

Fu et al. (2016) Piezoele

ctric Self 
adaptive 

Micro-

EDM 

1) SR 1) Steel tool 1) Spindle speed 

2) Open voltage 
3) Feed speed 

4) Adjustable 

capacitor 

1) Taguchi’s 

technique 

The SR has increased 

with decreasing open 
voltage and adjustable 

capacitor. 

Raj & Prabhu 
(2017) 

Wire 
EDM 

1) MRR 
2) SR 

1) Titanium 1) Toff 
2) feed rate 

3) Ton 

1) RSM 
method 

The crucial elements 
that affect the SR are 

found in Ton and Toff. 

Khullar et al. 
(2017) 

EDM 1) MRR 
2) SR 

1) AISI 5160 1) Ip 
2) Ton 

3) Flushing 

modes 
4) Toff 

1) RSM &  
2) Non 

dominating 

sorting GA 

As Ip and Ton rise, 
MRR also rises. 

Bhosle & 

Sharma (2017) 

µEDM 

Drilling 

1) MRR 

2) Taper Angle 

3) Overcut 

1) Inconel 600 1) Ton 

2) Voltage 

3) Toff 

4) feed rate 

5) Capacitance 

1) Grey 

relation 

analysis 

technique 

Voltage and 

capacitance are the two 

factors that have the 

most impact on the 

responses. 

Alavi & Jahan 
(2017) 

µEDM 1) Machining 
time 

2) TWR 

3) Crater size 
4) Hardness 

1) Ti6Al4V 1) Servo voltage 
2) TN coating  

3) Capacitance 

4) Electrode 
rotational 

speed 

1) Anova &  
2) Manova 

technique 

Voltage affects the 
amount of time spent 

cutting and the size of 

the crater. 

Bose & Pain 
(2018) 

EDM 1) MRR 
2) Over Cut 

1) Mild Steel 1) Spark gap  
2) Gap current 

3) Duty factor  

4) Ton 

1) Response 
surface 

technique 

For overcuts between 
87.44 mm2 and 14.44 

mm2, the obtained 

MRR ranges from 
0.0065 gm/sec to 

0.0017 gm/sec. 

Maity & Mishra 
(2018) 

µEDM 1) Recast layer 
thickness 

2) Over cut 

3) MRR 

1) Inconel 718 1) Ip 
2) Ton 

3) Voltage 

4) Toff 

1) Teaching 
learning 

2) Artificial 

bee colony 
algo. 

The Pareto-optimal 
solutions discovered 

using various 

techniques. 

Faisal & Kumar 

(2018) 

EDM 1) MRR 

2) Average 

roughness 

1) Oil 

Hardened 

Non-
Shrinking 

Steel 

1) Voltage Gap  

2) Ton 

3) Toff 
4) Pulse current 

1) Heuristic 

and  

2) PSO 
Optimizatio

n technique 

The proposed 

algorithm delivers the 

best values for the 
created model. 

Gangil & 
Pradhan (2018) 

EDM 1) MRR 
2) EWR 

1) Ti6Al4V 1) Voltage  
2) Ton 

3) Current 

4) Duty cycle 

1) Response 
surface 

technique 

Ip has identified the 
key variable that has 

the most impact on the 

answers. 
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Kandpal et al. 

(2018) 

EDM 1) MRR 1) Al based 

MMC 

1) Pulse current 

2) Duty factor  

3) Ton 

1) Taguchi 

technique 

As the Ton and pulse 

current rise, MRR gets 

better. 

Ahuja et al. 

(2020) 

Wire 

EDM 

1)  CS 

2)  SR 

3)  CR 

1) ZM21 Mg 

alloy 

1) Toff 

2) Ton 

3) SV  
4) WF 

1) RSM and 

2) Desirability 

approach method 

The improvement in the 

specimen's surface is 

visible by SEM and 
XRD. 

Jaiswal et al. 

(2018) 

Wire 

EDM 

1) SR,  

2) CS 

1) D3 die steel 1) Servo voltage, 

2) Pulse On time,  

3) Wire tension  
4) Pulse off time,  

1) Taguchi’s 

approach, 

2)  MOORA 

They discovered 

minimal Ra and 

improved cutting speed. 

Bagal et al. 

(2019) 

Wire 

EDM 

1) Surface 

quality,  

2) Tool 

wear rate 

(TWR), 
3) KW 

1) Stainless 

Steel 

1) Current  

2) Ton,  

3) Toff, 

1) Genetic 

Algorithm 

and 

Simulated 

Annealing, 
Combine 

RSM-

TOPSIS 

Ra, kf, and TWR all rise 

as Ton time tends to 

increase. 

Tonday & 
Tigga (2019) 

WEDM 1) SR 1) Inconel 718 1) Ton,  
2) Cutting voltage 

(CV) 

3) Wire feed rate 
(WF),  

4) Toff,  
5) Flushing pressure 

(FP),  

1) Taguchi 
technique, 

2) RSM,  

3) analysis of 
variance 

The information is 
nearly real-time 

machining time needed 

to machine a 22 mm 
diameter circular bar. 

Inconel 718's surface 
was characterised. 

Subrahmanya

m & 
Nancharaiah 

(2020) 

Wire-

cut 
EDM 

1) SR,  

2) MRR 

1) Inconel 625 1) Discharge current,  

2) Servo voltage 
(SV) 

3) Ton,  

4) Toff, 

1) Taguchi 

method 
along with 

2) ANOVA 

Toff plays a significant 

role in MRR and Ra 
Tonne. 

Babu et al. 

(2019) 

WEDM 1) Ra,  

2) MRR 

1) Inconel 750 1) Current  

2) Ton,  

3) Toff,  
4) Voltage, 

1) Combined 

ANN and 

2) PSO 
method 

The artificial neural 

network that was used to 

create the association 
between the process 

parameters and the 

output values found that 
the root mean square 

error was the same as it 

was for MRR and SR. 

Chaudhari 
(2019) 

WEDM 1) MRR, 
2) Micro-

hardness

(MH),  
3) Surface 

quality 

1) (Ni55.8Ti) 
super-

elastic 

SMA 

1) Discharge Current  
2) Ton,  

3) Toff, 

1) RSM  
2) Heat-

transfer 

search 
(HTS) 

algorithm 

and 

The outcomes 
demonstrated that while 

Toff and current had a 

considerable impact on 
MRR, they had the most 

effects on SR and MH. 

Das et al. 

(2019) 

WEDM 1) TWR,  

2) KW,  

3) surface 
quality 

1) SS 304 

grade 

stainless 
steel w 

1) Wire tension 

(WT),  

2) Ton, 
3) Toff,  

4) Servo voltage 

(SV), 

1) Grey-fuzzy 

approach  

2) RSM and  
3) TOPSIS 

method,  

It was discovered that 

pulse ON time was the 

most important factor 
for tool wear rate, kerf 

width, and surface 

roughness. 

Kumar et al. 

(2020) 

WEDM 1) Spark 

gap (SG) 

width, 
2) MRR 

1) Hybrid Al 

Composite  

2) Al-matrix 

1) Pulse peak current 

(Ip)  

2) Spark gap-set 
voltage (SV) 

3) Ton, 

4) Toff, 
5) Wire feed rate 

(WF), 

6) Wire tension (WT) 

1) Regression 

analysis,  

2) ANOVA 
(analysis of 

variance) 

 

An improvement of 

33.72% and 27.28% in 

the ideal parametric 
configuration for both 

MRR and SG. 
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Goyal, et al. 

(2021) 

WEDM 1) MRR, 

spark 

gap, kerf 
width 

1) Ni49Ti51 

shape 

memory 
alloy 

1) Current,  

2) Wire feed rate  

3) Ton,  
4) Toff,  

5) Wire tension 

1) ANN,  

2) Response 

surface 
methodology 

(RSM), 

3) BPNN 
approach 

Ton and I.P. are the most 

important parameters 

for MRR. 

Ishfaq et al. 

(2020) 

WEDM 1) SR,  

2) cutting 
rate,  

3) kerf 

width 

1) Al6061-

7.5% SiC 
squeeze-

casted 

composite 

1) Current,  

2) Pulse,  
3) Voltage 

1) Multi-

objective 
genetic 

algorithm,  

2) Response 
Surface 

Methodology 

They discovered the 

ideal combination of 
properties for the chosen 

material. 

Kumar et al. 

(2019) 

WEDM 1) Tool wear 

rate,  
2) MRR,  

3) SR 

1) Stainless 

steel AISI 
630 

1) Wire feed rate  

2) Discharge Current, 
3) Ton, 

4) Toff 

1) Fuzzy 

approach 

The fuzzy model system 

provides an overall 
accuracy of 90%. 

Lalwani et al. 
(n.d.) 

Wire 
EDM 

1) KW,  
2) SR, and  

3) Material 

removal 
rate 

1) Inconel 718 
Alloy 

1) Peak Current, 
2) Ton, 

3) Toff,  

4) Servo Voltage,  
5) Wire Tension  

1) Response 
surface 

methodology

, 
2) Artificial 

neural 

network 
(ANN)-

based 

models,  
3) NSGA- II 

The factor that affects 
Inconel 718 machining 

the most is TONNE. 

KW, Ra, and MRR are 
good fits for RSM 

models. 

Sen et al. 

(2021) 

WEDM 1) Power 

Consump
tion,  

2) MRR, 

3) Kerf 
Thicknes

s, 

1) Inconel 800 1) Peak Current,  

2) Peak voltage,  
3) Pulse on Time, 

4) Pulse off Time,  

5) Spark gap Voltage,  
6) Wire tension,  

7) Wire feed,  

8) Water pressure,  
9) Servo feed 

1) Type-2 

Fuzzy AHP-
ARAS 

The best and most 

cautious method of 
machining Inconel 800 

is to use a non-

conventional machining 
strategy. 

Kulkarni et al. 

(2020) 

Wire 

EDM 

1) MRR,  

2) TWR,  

3) SR 

1) Medical 

Grade 

NiTiNOL 
Memory 

Alloy 

1) Servo voltage (SV), 

2) Ton,  

3) Toff, 
4) Wire feed (WF) 

1) Modified 

differential 

evolution,  
2) RSM 

It is discovered that SV 

is a more important 

process element with 
lower SR and TWR in 

order to get higher 

MRR. 

Ishfaq et al. 

(2020) 

WEDM 1) Surface 

quality 

and  
2) MRR 

1) Al6061 1) Servo voltage,  

2) Wire feed,  

3) Open voltage,  
4) Wire tension,  

5) Ton,  

6) Toff,  
7) Pressure 

1) Taguchi-

based 

parametric 
optimization 

The primary controlling 

factor is pulse length, 

which accounts for 51% 
and 88% of surface 

finish and MRR, 

respectively. 

Doreswamy et 

al. (2021) 

Wire-

EDM 

1) MRR 1) SiCp 

reinforced 
Al6061 

composite 

1) Current,  

2) Voltage  
3) Ton,  

4) Toff,  

5) Wire speed  

1) Taguchi 

approach, 
2) ANOVA 

The voltage, ton, toff, 

wire speed, and current 
all had a major impact 

on the material removal 

rate. 
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Kumar et al. 

(2022) 

WEDM 1) MRR,  

2) SR,  

3) SG 

1) Al-Hybrid 

Composites 

1) Spark gap-set 

voltage (SV), 

2) Wire feed rate 
(WF),  

3) Pulse peak current 

(Ip),  
4) Ton, 

5) Toff,  

6) Wire tension (WT) 

1) AHP and 

Genetic 

Algorithm 

ideal circumstances for 

hybrid composites 

machining. 

Natarajan et 

al. (2022) 

WEDM 1) Surface 

roughnes

s (SR) 
2) Material 

removal 

rate 
(MRR) 

1) Stainless 

Steel 

1) Voltage (V), 

2) Mean current (I), 

3) Ton, 
4) Toff, 

5) Wire feed (WF) 

1) Taguchi,  

2) ANOVA,  

3) GRA 

The most important 

process variables and 

the ideal optimisation 
technique for different 

steel types. 

Chaudhari et 

al. (2022) 

Near 

dry 

WEDM 

1) material 

removal 

rate 
(MRR), 

and  

2) surface 
roughnes

s (SR) 

1) Nitinol 

Shape 

Memory 
Alloy 

1) Current,  

2) Ton,  

3) Toff, 

1) ANOVA,  

2) A teaching–

learning-
based 

optimization 

(TLBO) 

Determine the best 

possible setup for the 

process parameters. 

Sharma et al. 
(2023) 

WEDM 1) Maximu
m surface 

roughnes

s (Rz) 
2) Dimensio

nal 

accuracy 
(DA), 

3) Average 

surface 
roughnes

s (Ra), 

1) Pure 
Titanium 

1) Servo Voltage,  
2) Ton, 

3) Toff,  

4) Wire Tension 

1) Swarm 
Optimization 

(PSO) 

2) Evaluation 
Based on 

Distance 

from 
3) Average 

Solution 

(EDAS) and 
Particle 

notable decrease in 
surface flaws 

Balaji and 
Narendranath 

(2023) 

Wire-
EDM 

1) MRR, Ra 1) Ni–Ti-Hf 
shape 

memory 

alloy 

1) Wire Feed, 
2) Ton, 

3) Toff,  

4) Servo Voltage 

1) CNN-based 
SEM-image 

classification  

2) PSO 

Minimal percentage 
errors for both input 

parameter sets 

Kosaraju et al. 
(2023) 

WEDM 1) material 
removal 

rate 

(MRR) 
2) and 

surface 

roughnes
s (Ra) 

1) Inconel 600 1) Pulse-on time,  
2) Current,  

3) Pulse-off time, 

1) Taguchi 
analysis 

Experimental analysis 
was done to optimise the 

process parameters for 

the Inconel 600 alloy 
using both untreated and 

cryogenically treated 

zinc electrodes. 

 

 

4. Conclusion and Future Scope 
This paper is about the different output and input parameters of modern machining methods and how they 

can be optimised. Wire-EDM and EDM are two current machining methods that were looked at for this 

work. The literature review looks for modern machining processes, which include: (1) the work piece 

material; (2) the input parameters; (3) the response parameters; and (4) the optimisation method used. There 

is a section called "Remarks" that talks about what the authors learned from their works. Here are some of 

the things that were noticed during the review:- 
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• In order to achieve the optimal production conditions a crucial requirement for enterprises seeking to 

produce high-quality goods at reduced costs the EDM optimisation technique is applied in the 

manufacturing process sector in this review study. 

• As new materials keep getting better, experts keep coming up with new ways to work with them. During 

the time period under study, the EDM process has changed in many ways, such as with Wire-EDM, 

piezoelectric self-adaptive micro-EDM, cryogenic cooled EDM, Dry-EDM, etc. These versions were 

used a lot to cut and shape different types of traditional and advanced materials. 

• It was discovered that advanced optimisation methods have been used successfully to figure out how 

process parameters affect the responses. Researchers have come up with optimization methods, such as 

combined ANN–NSGAII, fuzzy TOPSIS, genetic algorithm through particle swarm optimization, GRA, 

etc., to find the best way to machine something. Researchers use integrated ANN–NSGAII optimization 

methods most of the time now. 
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